China Custom High Precision Mobile Phone in-Mold Injection Molded Hardware Sheet Metal Stamping Parts

Product Description

 

Product Description

Capability & Advantage:

Equipment Over 70 sets automatic lathes, over 30 sets CNC lathes, over 10 sets CNC machining center,
over 200 sets secondary processing machines.
RFQ Customer Inquiry →Engineering Communication →Cost Analysis →Sales Analysis →Quote to Customer
» 1-3 Work Days Only
» Submit RFQ with complete commercial terms
Sample Making Sample Order → Engineering Review → Sample Plan to Customer → Sample Status Tracking → Submit Samples with Doc.
» Tooling L/T: 2-4 wks, Sample L/T: 2 wks
» Continuous Sample Status Tracking
» Complete Documents for sample approval
Order Management CRM System → Open Order Confirm → Logistic Arrangement.
» Production L/T: 2-4 wks
» Weekly Open Order Confirm
» Preferred 3PL Service to Customers
Quality Control Certificates: RoHS, ISO9001:2008, SGS.
IQC → IPQC → OQC/FQC → Quality Complain Feedback → Audit & Training.
» Plant Audit and Qualified by world famous company
» Strict Quality Management Procedure with Traceability
Application Aerospace/ Marine/ Metro/ Motorbike/ Automotive industries, Instruments & Meters, Office equipments, Home appliance, Medical equipments, Telecommunication, Electrical & Electronics, Fire detection system, etc

Advantage One-Stop Solution for Mechanical Customers
Rich experience in Small Volume & Large variety
Rich experience in Large Volume
20+ years field experience, and 80+ engineers
Processing Method CNC machining, Turning, Milling, Stamping, Sheet metal, Assembly
Materials Available Stainless steel, Carbon steel, Brass, Bronze, Iron, Aluminum alloy, Nylon, SPCC, SECC, etc.
Materials standard can be negotiated
Processing Capacity Out Diameter: 0.5mm-500.0mm
Length: 1.0mm-2000mm
Tolerance ±0.005mm
Surface Treatment Anodizing, Sandblast, Electroplating, Powder coating, Liquid Painting, PVD, Electrolytic polishing, ect.

Products photos
you are welcome to visit our factory.

for more information, kindly email us to talk more. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: One Stop Service
Warranty: One Year
Type: Cold Stamping
Processing Type: Shaping Metal
Material: Stainless Steel
Mould: Multistep Progressive Dies
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you provide examples of products or equipment that incorporate injection molded parts?

Yes, there are numerous products and equipment across various industries that incorporate injection molded parts. Injection molding is a widely used manufacturing process that enables the production of complex and precise components. Here are some examples of products and equipment that commonly incorporate injection molded parts:

1. Electronics and Consumer Devices:

– Mobile phones and smartphones: These devices typically have injection molded plastic casings, buttons, and connectors.

– Computers and laptops: Injection molded parts are used for computer cases, keyboard keys, connectors, and peripheral device housings.

– Appliances: Products such as televisions, refrigerators, washing machines, and vacuum cleaners often incorporate injection molded components for their casings, handles, buttons, and control panels.

– Audio equipment: Speakers, headphones, and audio players often use injection molded parts for their enclosures and buttons.

2. Automotive Industry:

– Cars and Trucks: Injection molded parts are extensively used in the automotive industry. Examples include dashboard panels, door handles, interior trim, steering wheel components, air vents, and various under-the-hood components.

– Motorcycle and Bicycle Parts: Many motorcycle and bicycle components are manufactured using injection molding, including fairings, handle grips, footrests, instrument panels, and engine covers.

– Automotive Lighting: Headlights, taillights, turn signals, and other automotive lighting components often incorporate injection molded lenses, housings, and mounts.

3. Medical and Healthcare:

– Medical Devices: Injection molding is widely used in the production of medical devices such as syringes, IV components, surgical instruments, respiratory masks, implantable devices, and diagnostic equipment.

– Laboratory Equipment: Many laboratory consumables, such as test tubes, petri dishes, pipette tips, and specimen containers, are manufactured using injection molding.

– Dental Equipment: Dental tools, orthodontic devices, and dental prosthetics often incorporate injection molded components.

4. Packaging Industry:

– Bottles and Containers: Plastic bottles and containers used for food, beverages, personal care products, and household chemicals are commonly produced using injection molding.

– Caps and Closures: Injection molded caps and closures are widely used in the packaging industry for bottles, jars, and tubes.

– Thin-Walled Packaging: Injection molding is used to produce thin-walled packaging products such as trays, cups, and lids for food and other consumer goods.

5. Toys and Games:

– Many toys and games incorporate injection molded parts. Examples include action figures, building blocks, puzzles, board game components, and remote-controlled vehicles.

6. Industrial Equipment and Tools:

– Industrial machinery: Injection molded parts are used in various industrial equipment and machinery, including components for manufacturing machinery, conveyor systems, and robotic systems.

– Power tools: Many components of power tools, such as housing, handles, switches, and guards, are manufactured using injection molding.

– Hand tools: Injection molded parts are incorporated into a wide range of hand tools, including screwdrivers, wrenches, pliers, and cutting tools.

These are just a few examples of products and equipment that incorporate injection molded parts. The versatility of injection molding allows for its application in a wide range of industries, enabling the production of high-quality components with complex geometries and precise specifications.

How do injection molded parts enhance the overall efficiency and functionality of products and equipment?

Injection molded parts play a crucial role in enhancing the overall efficiency and functionality of products and equipment. They offer numerous advantages that make them a preferred choice in various industries. Here’s a detailed explanation of how injection molded parts contribute to improved efficiency and functionality:

1. Design Flexibility:

Injection molding allows for intricate and complex part designs that can be customized to meet specific requirements. The flexibility in design enables the integration of multiple features, such as undercuts, threads, hinges, and snap fits, into a single molded part. This versatility enhances the functionality of the product or equipment by enabling the creation of parts that are precisely tailored to their intended purpose.

2. High Precision and Reproducibility:

Injection molding offers excellent dimensional accuracy and repeatability, ensuring consistent part quality throughout production. The use of precision molds and advanced molding techniques allows for the production of parts with tight tolerances and intricate geometries. This high precision and reproducibility enhance the efficiency of products and equipment by ensuring proper fit, alignment, and functionality of the molded parts.

3. Cost-Effective Mass Production:

Injection molding is a highly efficient and cost-effective method for mass production. Once the molds are created, the injection molding process can rapidly produce a large number of identical parts in a short cycle time. The ability to produce parts in high volumes streamlines the manufacturing process, reduces labor costs, and ensures consistent part quality. This cost-effectiveness contributes to overall efficiency and enables the production of affordable products and equipment.

4. Material Selection:

Injection molding offers a wide range of material options, including engineering thermoplastics, elastomers, and even certain metal alloys. The ability to choose from various materials with different properties allows manufacturers to select the most suitable material for each specific application. The right material selection enhances the functionality of the product or equipment by providing the desired mechanical, thermal, and chemical properties required for optimal performance.

5. Structural Integrity and Durability:

Injection molded parts are known for their excellent structural integrity and durability. The molding process ensures uniform material distribution, resulting in parts with consistent strength and reliability. The elimination of weak points, such as seams or joints, enhances the overall structural integrity of the product or equipment. Additionally, injection molded parts are resistant to impact, wear, and environmental factors, ensuring long-lasting functionality in demanding applications.

6. Integration of Features:

Injection molding enables the integration of multiple features into a single part. This eliminates the need for assembly or additional components, simplifying the manufacturing process and reducing production time and costs. The integration of features such as hinges, fasteners, or mounting points enhances the overall efficiency and functionality of the product or equipment by providing convenient and streamlined solutions.

7. Lightweight Design:

Injection molded parts can be manufactured with lightweight materials without compromising strength or durability. This is particularly advantageous in industries where weight reduction is critical, such as automotive, aerospace, and consumer electronics. The use of lightweight injection molded parts improves energy efficiency, reduces material costs, and enhances the overall performance and efficiency of the products and equipment.

8. Consistent Surface Finish:

Injection molding produces parts with a consistent and high-quality surface finish. The use of polished or textured molds ensures that the molded parts have smooth, aesthetic surfaces without the need for additional finishing operations. This consistent surface finish enhances the overall functionality and visual appeal of the product or equipment, contributing to a positive user experience.

9. Customization and Branding:

Injection molding allows for customization and branding options, such as incorporating logos, labels, or surface textures, directly into the molded parts. This customization enhances the functionality and marketability of products and equipment by providing a unique identity and reinforcing brand recognition.

Overall, injection molded parts offer numerous advantages that enhance the efficiency and functionality of products and equipment. Their design flexibility, precision, cost-effectiveness, material selection, structural integrity, lightweight design, and customization capabilities make them a preferred choice for a wide range of applications across industries.

What industries and applications commonly utilize injection molded parts?

Injection molded parts find widespread use across various industries and applications due to their versatility, cost-effectiveness, and ability to meet specific design requirements. Here’s a detailed explanation of the industries and applications that commonly utilize injection molded parts:

1. Automotive Industry:

The automotive industry extensively relies on injection molded parts for both interior and exterior components. These parts include dashboards, door panels, bumpers, grilles, interior trim, seating components, electrical connectors, and various engine and transmission components. Injection molding enables the production of lightweight, durable, and aesthetically pleasing parts that meet the stringent requirements of the automotive industry.

2. Consumer Electronics:

Injection molded parts are prevalent in the consumer electronics industry. They are used in the manufacturing of components such as housings, buttons, bezels, connectors, and structural parts for smartphones, tablets, laptops, gaming consoles, televisions, cameras, and other electronic devices. Injection molding allows for the production of parts with precise dimensions, excellent surface finish, and the ability to integrate features like snap fits, hinges, and internal structures.

3. Medical and Healthcare:

The medical and healthcare industry extensively utilizes injection molded parts for a wide range of devices and equipment. These include components for medical devices, diagnostic equipment, surgical instruments, drug delivery systems, laboratory equipment, and disposable medical products. Injection molding offers the advantage of producing sterile, biocompatible, and precise parts with tight tolerances, ensuring safety and reliability in medical applications.

4. Packaging and Containers:

Injection molded parts are commonly used in the packaging and container industry. These parts include caps, closures, bottles, jars, tubs, trays, and various packaging components. Injection molding allows for the production of lightweight, durable, and visually appealing packaging solutions. The process enables the integration of features such as tamper-evident seals, hinges, and snap closures, contributing to the functionality and convenience of packaging products.

5. Aerospace and Defense:

The aerospace and defense industries utilize injection molded parts for a variety of applications. These include components for aircraft interiors, cockpit controls, avionics, missile systems, satellite components, and military equipment. Injection molding offers the advantage of producing lightweight, high-strength parts with complex geometries, meeting the stringent requirements of the aerospace and defense sectors.

6. Industrial Equipment:

Injection molded parts are widely used in industrial equipment for various applications. These include components for machinery, tools, pumps, valves, electrical enclosures, connectors, and fluid handling systems. Injection molding provides the ability to manufacture parts with excellent dimensional accuracy, durability, and resistance to chemicals, oils, and other harsh industrial environments.

7. Furniture and Appliances:

The furniture and appliance industries utilize injection molded parts for various components. These include handles, knobs, buttons, hinges, decorative elements, and structural parts for furniture, kitchen appliances, household appliances, and white goods. Injection molding enables the production of parts with aesthetic appeal, functional design, and the ability to withstand regular use and environmental conditions.

8. Toys and Recreational Products:

Injection molded parts are commonly found in the toy and recreational product industry. They are used in the manufacturing of plastic toys, games, puzzles, sporting goods, outdoor equipment, and playground components. Injection molding allows for the production of colorful, durable, and safe parts that meet the specific requirements of these products.

9. Electrical and Electronics:

Injection molded parts are widely used in the electrical and electronics industry. They are employed in the production of electrical connectors, switches, sockets, wiring harness components, enclosures, and other electrical and electronic devices. Injection molding offers the advantage of producing parts with excellent dimensional accuracy, electrical insulation properties, and the ability to integrate complex features.

10. Plumbing and Pipe Fittings:

The plumbing and pipe fittings industry relies on injection molded parts for various components. These include fittings, valves, connectors, couplings, and other plumbing system components. Injection molding provides the ability to manufacture parts with precise dimensions, chemical resistance, and robustness, ensuring leak-free connections and long-term performance.

In summary, injection molded parts are utilized in a wide range of industries and applications. The automotive, consumer electronics, medical and healthcare, packaging, aerospace and defense, industrial equipment, furniture and appliances, toys and recreational products, electrical and electronics, and plumbing industries commonly rely on injection molding for the production of high-quality, cost-effective, and functionally optimized parts.

China Custom High Precision Mobile Phone in-Mold Injection Molded Hardware Sheet Metal Stamping Parts  China Custom High Precision Mobile Phone in-Mold Injection Molded Hardware Sheet Metal Stamping Parts
editor by CX 2024-03-23

China manufacturer Custom FKM Nr Silicone Nr Silicone Rubber Products Plastic CHINAMFG Molding Parts

Product Description

Rubber bushing/rubber stopper/rubber shock absorber is vulcanized with various of material, such as EPDM, NR,SBR etc.
With Good resistance to seasonality, heat resistance, chlorination resistance, aging resistance.
Inside stainless steel and It has a very good damping effect.
Are widely applied in any area, such as furniture, Chassis instrument etc
 
Production Description

Item Name Rubber bushing, ruubber stopper, rubber shock absorber
Material EPDM,NBR,NR,SBR,PVC,EPT, PP/ABS
Color Black, white, red,etc
Dimension As client’s requirement
Hardness 30~90ShA
Feature High elasticity, insulation, abrasion resistance, oil resistance, aging resistance, high temperature resistance, cold resistance, anti-corrosion, anti-static
Application Removable instruction,furniture,etc
OEM welcome
MOQ Meet your requirement
Certification REACH, ROHS,FDA,SGS,etc

The advantage and property of rubber bushing/rubber stopper/rubber shock absorber
1. We adopt heighten new technology craft
2. The material of rubber bushing is complete fresh and tasteless
3. Not fade, anti-slip wear-resistant anti – pressure , damping, acid and alkali resistant
4.  Environment friendly


The different material of rubber bushing will cause different property.
EPDM/NBR/silicone/SBR/PP/PVC etc.

Items EPDM NR silicone PVC
Hardness
(Sha)
30~85 30~90 20~85 50~95
Tensile strength
(Mpa)
≥8.5MPa > 20 Mpa 3~8 10~50
Elongation(%) 200~550 1000% 200~800 200~600
Specific Gravity 0.75-1.6 1.15-1.21 1.25~1.35 1.3~1.7
Temperature range -40~+120°C -50~70ºC. -55~+350°C -29°C – 65.5°C

1. the property of NR
 It has good wear resistance, high elasticity, breaking strength and elongation, But in the air, it is easy to get age, and it is get sticky when it get in touch with heat, which is easy to expand and dissolve in mineral oil or gasoline, but it is resistant to strong acid, but not to Alkali . working temperature is -50~70ºC.
2. the property of EPDM
Weather ability, aging resistance, CHINAMFG resistance, chemical stability are excellent, and CFCS and a variety of refrigerants. Working temperature is -50~150
3. the property of silicone
It has excellent heat resistance, cold resistance, CHINAMFG resistance and atmospheric aging resistant.Good electrical insulation performance,The tensile strength and wear resistance are generally poor and has non- oil resistant. The working temperature is -55~250ºC
4. The property of NBR
Good oil resistance, heat resistance, abrasion resistance, solvent resistance and high – pressure oil,But it is not suitable for CHINAMFG solvents, such as ketones, ozone, nitro-hydrocarbons, and chloroform. The working temperature is -40~120 ºC
5. the property of CR
It has good elasticity, wear resistance and atmospheric aging resistance. It is not afraid of violent distortion and flammability.Chemical stability. The working temperature is -40~100 ºC
6. The property of FKM
Excellent high temperature resistance,And have excellent chemical resistance, most oil and solvent (other than ketones and esters).cold resistance is not good.
 

About US
These years, We are working on various project of customers and long term working in rubber industry. We have faith in giving your professional advice on your particular project.
At present, our market have been expanded to more than 30 countries, and still growing.
First we will get drawing or sample from our client to check their design. If there is no drawing or sample, we will ask some question about product concept and design idea.
Then according to what application environment of rubber part, we will help design drawing and what raw material is best for rubber part. OEM parts are ok for us.
 
We can meet your requirement of the design and use for different shapes and material,
 And high/low temperature, foam/sponge or CHINAMFG rubber profile, fire resistance and special property of any rubber profile and molding rubber part
The advantage of our company
1.We have excellent complete production line with advanced production and test equipment
 Adding First-class technicians, so that we can  offer you the competitive price and high quality ,fast delivery time .
2.We have a special drawing design department to design the correct drawing data meeting your requirements. Then, we will use CAD or other format drawing to carry on tracking the production of tooling, sample ,mass goods. To avoid something wrong to each process. To make sure all of dimension are correct.
3.We also has special production supervision department. The engineer staff will Supervise  each process from the manufacture of tooling to the production of mass goods.
Reduce something wrong happened, finally offer you parts meeting your technology requirement.
4. All of Raw material are past quality certification,In the meantime, we will first delivery test report of rubber part when all of mass goods are finished. And make sure the quality meet your requirement, then make shipment.

Packing and shipment

  • one part is packaged with 1 plastic bag, then certain quantity of mounting are put into carton box.
  • Carton box insider rubber mounting is with packing list detail. Such as, item name, the type number of rubber mounting, quantity of rubber mounting, gross weight,net weight, dimension of carton box,etc
  • All of carton box will be put on 1 non-fumigation pallet, then all carton boxes will be wrapped by film.
  • We have our own forwarder which has Rich experience in delivery arrangement to optimize the most economic and quickest shipping way, SEA,  AIR,  DHL, UPS ,FEDEX, TNT , etc.
  • Why choose us?
  • 1.Product: we specialize in rubber molding,injection and extruded rubber profile.
       And complete advanced production equipment and test equipment
    2.High quality:100% of the national standard has been no product quality complaints
    the materials are environmentally friendly and the technology reaches the international advanced level
    3.The competitive price:we have own factory, and the price is directly from factory. In additional,perfect advanced production equipment and enough staff. So the price is the best.
    4.Quantity :Small quantity is available
    5.Tooling:Developing tooling according to drawing or sample, and solve all of questions
    6.Package: all of package meet standard internal export package, carton outside, inside plastic bag for each part; as your requirement
    7.Transport:We have our own freight forwarder which can guarantee our goods can be delivered safely and promptly by sea or air
    8.Stock and delivery:Standard specification,lots of stocks, and fast delivery
    10. Service:Excellent service after-sales
     
  • Common Questions
  • What is the minimum order quantity for your rubber products?
  • Answer:We didn’t set the minimum order quantity,1~10pcs some client has ordered.
  • If we can get sample of rubber product from you?
  •  Answer:Of course, you can. Feel free to contact me about it if you need it.
  • Do we need to charge for customizing our own products? And if it is necessary to make tooling?
  • Answer: if we have the same or similar rubber part, at the same time, you satisfy it.
     Well, you don’t need to open tooling
    New rubber part, you will charge tooling according to the cost of tooling.
    In additional,if the cost of tooling is more than 1000 USD, we will return all of them to you in the future when purchasing order quantity reach certain quantity our company rule
  • How long you will get sample of rubber part?
  • Answer: Usually it is up to complexity degree of rubber part. Usually it take 7 to 10work days.
  • How many your company product rubber parts?
  •  Answer:It is up to the size of tooling and the quantity of cavity of tooling. If rubber part is more complicate and much bigger, well maybe just make few, but if rubber part is small and simple, the quantity is more than 200,000pcs.
  • Silicone part meet environment standard?
  • Answer:Our silicone part are all high grade 100% pure silicone material. We can offer you certification ROHS and SGS, FDA .Many of our products are exported to European and American countries. Such as: Straw, rubber diaphragm, food mechanical rubber, etc.
     
  • FAQ
    1. Are you factory or trade company?
    We  specialize in manufacturing rubber and plastic manufacturer, founded in 2004
    2. What’s the order process?
    A: Inquiry—provide us all clear requirements, such as drawing with detail technical data, or original sample
    B: Quotation—official quotation sheet with all detail specifications including price terms,shipment terms,etc
    C: Payment terms—100% prepaid the cost of tooling before making new sample
                    T/T 30% in advanced, and the balance according to the copy of the B/L
    D:Develop tooling—open the mould according to your requirement
    E:Sample confirmation—send you the sample for confirmation with test report from us
    F:Production—mass goods for order production
    G:Shipping— by sea, air or courier. Detailed picture of package will show you.
     
    3. What other terms of payment you use?
       PayPal, Western Union

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Agricultural, Industrial, Medical, Vehicle, Electronic, Household
Material: EPDM, Nr, NBR, Silicone, PVC, FKM, Eptetc
Process Technology: Molding or Injection
The Name of Enterprise: Manufacturer
Certification: FDA, SGS, Reach, RoHS, etc
OEM: Welcome
Samples:
US$ 0.3/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you explain the role of temperature and pressure in injection molding quality control?

Temperature and pressure are two critical parameters in injection molding that significantly impact the quality control of the process. Let’s explore their roles in more detail:

Temperature:

The temperature in injection molding plays several important roles in ensuring quality control:

1. Material Flow and Fill:

The temperature of the molten plastic material affects its viscosity, or flowability. Higher temperatures reduce the material’s viscosity, allowing it to flow more easily into the mold cavities during the injection phase. Proper temperature control ensures optimal material flow and fill, preventing issues such as short shots, flow marks, or incomplete part filling. Temperature control also helps ensure consistent material properties and dimensional accuracy in the final parts.

2. Melting and Homogenization:

The temperature must be carefully controlled during the melting process to ensure complete melting and homogenization of the plastic material. Insufficient melting can result in unmelted particles or inconsistent material properties, leading to defects in the molded parts. Proper temperature control during the melting phase ensures uniform melting and mixing of additives, enhancing material homogeneity and the overall quality of the molded parts.

3. Cooling and Solidification:

After the molten plastic is injected into the mold, temperature control is crucial during the cooling and solidification phase. Proper cooling rates and uniform cooling help prevent issues such as warping, shrinkage, or part distortion. Controlling the temperature allows for consistent solidification throughout the part, ensuring dimensional stability and minimizing internal stresses. Temperature control also affects the part’s crystallinity and microstructure, which can impact its mechanical properties.

Pressure:

Pressure control is equally important in achieving quality control in injection molding:

1. Material Packing:

During the packing phase of injection molding, pressure is applied to the molten plastic material to compensate for shrinkage as it cools and solidifies. Proper pressure control ensures that the material is adequately packed into the mold cavities, minimizing voids, sinks, or part deformation. Insufficient packing pressure can lead to incomplete filling and poor part quality, while excessive pressure can cause excessive stress, part distortion, or flash.

2. Gate and Flow Control:

The pressure in injection molding influences the flow behavior of the material through the mold. The pressure at the gate, where the molten plastic enters the mold cavity, needs to be carefully controlled. The gate pressure affects the material’s flow rate, filling pattern, and packing efficiency. Optimal gate pressure ensures uniform flow and fill, preventing issues like flow lines, weld lines, or air traps that can compromise part quality.

3. Ejection and Part Release:

Pressure control is essential during the ejection phase to facilitate the easy removal of the molded part from the mold. Adequate ejection pressure helps overcome any adhesion or friction between the part and the mold surfaces, ensuring smooth and damage-free part release. Improper ejection pressure can result in part sticking, part deformation, or mold damage.

4. Process Monitoring and Feedback:

Monitoring and controlling the temperature and pressure parameters in real-time are crucial for quality control. Advanced injection molding machines are equipped with sensors and control systems that continuously monitor temperature and pressure. These systems provide feedback and allow for adjustments during the process to maintain optimum conditions and ensure consistent part quality.

Overall, temperature and pressure control in injection molding are vital for achieving quality control. Proper temperature control ensures optimal material flow, melting, homogenization, cooling, and solidification, while pressure control ensures proper material packing, gate and flow control, ejection, and part release. Monitoring and controlling these parameters throughout the injection molding process contribute to the production of high-quality parts with consistent dimensions, mechanical properties, and surface finish.

How do injection molded parts enhance the overall efficiency and functionality of products and equipment?

Injection molded parts play a crucial role in enhancing the overall efficiency and functionality of products and equipment. They offer numerous advantages that make them a preferred choice in various industries. Here’s a detailed explanation of how injection molded parts contribute to improved efficiency and functionality:

1. Design Flexibility:

Injection molding allows for intricate and complex part designs that can be customized to meet specific requirements. The flexibility in design enables the integration of multiple features, such as undercuts, threads, hinges, and snap fits, into a single molded part. This versatility enhances the functionality of the product or equipment by enabling the creation of parts that are precisely tailored to their intended purpose.

2. High Precision and Reproducibility:

Injection molding offers excellent dimensional accuracy and repeatability, ensuring consistent part quality throughout production. The use of precision molds and advanced molding techniques allows for the production of parts with tight tolerances and intricate geometries. This high precision and reproducibility enhance the efficiency of products and equipment by ensuring proper fit, alignment, and functionality of the molded parts.

3. Cost-Effective Mass Production:

Injection molding is a highly efficient and cost-effective method for mass production. Once the molds are created, the injection molding process can rapidly produce a large number of identical parts in a short cycle time. The ability to produce parts in high volumes streamlines the manufacturing process, reduces labor costs, and ensures consistent part quality. This cost-effectiveness contributes to overall efficiency and enables the production of affordable products and equipment.

4. Material Selection:

Injection molding offers a wide range of material options, including engineering thermoplastics, elastomers, and even certain metal alloys. The ability to choose from various materials with different properties allows manufacturers to select the most suitable material for each specific application. The right material selection enhances the functionality of the product or equipment by providing the desired mechanical, thermal, and chemical properties required for optimal performance.

5. Structural Integrity and Durability:

Injection molded parts are known for their excellent structural integrity and durability. The molding process ensures uniform material distribution, resulting in parts with consistent strength and reliability. The elimination of weak points, such as seams or joints, enhances the overall structural integrity of the product or equipment. Additionally, injection molded parts are resistant to impact, wear, and environmental factors, ensuring long-lasting functionality in demanding applications.

6. Integration of Features:

Injection molding enables the integration of multiple features into a single part. This eliminates the need for assembly or additional components, simplifying the manufacturing process and reducing production time and costs. The integration of features such as hinges, fasteners, or mounting points enhances the overall efficiency and functionality of the product or equipment by providing convenient and streamlined solutions.

7. Lightweight Design:

Injection molded parts can be manufactured with lightweight materials without compromising strength or durability. This is particularly advantageous in industries where weight reduction is critical, such as automotive, aerospace, and consumer electronics. The use of lightweight injection molded parts improves energy efficiency, reduces material costs, and enhances the overall performance and efficiency of the products and equipment.

8. Consistent Surface Finish:

Injection molding produces parts with a consistent and high-quality surface finish. The use of polished or textured molds ensures that the molded parts have smooth, aesthetic surfaces without the need for additional finishing operations. This consistent surface finish enhances the overall functionality and visual appeal of the product or equipment, contributing to a positive user experience.

9. Customization and Branding:

Injection molding allows for customization and branding options, such as incorporating logos, labels, or surface textures, directly into the molded parts. This customization enhances the functionality and marketability of products and equipment by providing a unique identity and reinforcing brand recognition.

Overall, injection molded parts offer numerous advantages that enhance the efficiency and functionality of products and equipment. Their design flexibility, precision, cost-effectiveness, material selection, structural integrity, lightweight design, and customization capabilities make them a preferred choice for a wide range of applications across industries.

Are there different types of injection molded parts, such as automotive components or medical devices?

Yes, there are various types of injection molded parts that are specifically designed for different industries and applications. Injection molding is a versatile manufacturing process capable of producing complex and precise parts with high efficiency and repeatability. Here are some examples of different types of injection molded parts:

1. Automotive Components:

Injection molding plays a critical role in the automotive industry, where it is used to manufacture a wide range of components. Some common injection molded automotive parts include:

  • Interior components: Dashboard panels, door handles, trim pieces, instrument clusters, and center consoles.
  • Exterior components: Bumpers, grilles, body panels, mirror housings, and wheel covers.
  • Under-the-hood components: Engine covers, air intake manifolds, cooling system parts, and battery housings.
  • Electrical components: Connectors, switches, sensor housings, and wiring harnesses.
  • Seating components: Seat frames, headrests, armrests, and seatbelt components.

2. Medical Devices:

The medical industry relies on injection molding for the production of a wide range of medical devices and components. These parts often require high precision, biocompatibility, and sterilizability. Examples of injection molded medical devices include:

  • Syringes and injection pens
  • Implantable devices: Catheters, pacemaker components, orthopedic implants, and surgical instruments.
  • Diagnostic equipment: Test tubes, specimen containers, and laboratory consumables.
  • Disposable medical products: IV components, respiratory masks, blood collection tubes, and wound care products.

3. Consumer Products:

Injection molding is widely used in the production of consumer products due to its ability to mass-produce parts with high efficiency. Examples of injection molded consumer products include:

  • Household appliances: Television and audio equipment components, refrigerator parts, and vacuum cleaner components.
  • Electronics: Mobile phone cases, computer keyboard and mouse, camera components, and power adapters.
  • Toys and games: Action figures, building blocks, puzzles, and board game components.
  • Personal care products: Toothbrushes, razor handles, cosmetic containers, and hairdryer components.
  • Home improvement products: Light switch covers, door handles, power tool housings, and storage containers.

4. Packaging:

Injection molding is widely used in the packaging industry to produce a wide variety of plastic containers, caps, closures, and packaging components. Some examples include:

  • Bottles and containers for food, beverages, personal care products, and household chemicals.
  • Caps and closures for bottles and jars.
  • Thin-walled packaging for food products such as trays, cups, and lids.
  • Blister packs and clamshell packaging for retail products.
  • Packaging inserts and protective foam components.

5. Electronics and Electrical Components:

Injection molding is widely used in the electronics industry for the production of various components and enclosures. Examples include:

  • Connectors and housings for electrical and electronic devices.
  • Switches, buttons, and control panels.
  • PCB (Printed Circuit Board) components and enclosures.
  • LED (Light-Emitting Diode) components and light fixtures.
  • Power adapters and chargers.

These are just a few examples of the different types of injection molded parts. The versatility of injection molding allows for the production of parts in various industries, ranging from automotive and medical to consumer products, packaging, electronics, and more. The specific design requirements and performance characteristics of each part determine the choice of materials, tooling, and manufacturing processes for injection molding.

China manufacturer Custom FKM Nr Silicone Nr Silicone Rubber Products Plastic CHINAMFG Molding Parts  China manufacturer Custom FKM Nr Silicone Nr Silicone Rubber Products Plastic CHINAMFG Molding Parts
editor by CX 2024-02-22

China best Plastic Injection Molding Service Custom Nylon ABS Rubber Injection Molded CHINAMFG

Product Description

 Produt Description
 

Product name  Plastic Injection Molding  service  custom Nylon ABS Rubber Injection Molded Plastic Parts
Product material ABS, PC, PP, PS, POM,PBT,PVC,PA6,PA66,PA66+30%GF,
PTFE,PC+ABS,TPE,etc
Color any colour available,will according customer’s request
Size as per your drawing or the sample
Tolerance +/-0.1MM
surface finish Color painting,Texture,Silk-printing,Vacuum coating,rubber coating, etc.
Logo accept customized
Application field Various plastic injection molded parts for various industrial,electronic and automotive applications
MOQ Negotiable
Mold Cavity Single or Multi-cavity
Mold life  5 shots
runner system hot runner and cold runner
package standard export carton packing ,or according your request.
Payment terms For mold: 50% advanceT/T payment, balance will be after you confirm our samples; For production: 30%T/T, balance will be after received our B/L copy
lead time 
25-35 days for mould,mass production according the order quantity

Detailed products  

  

Production Procedure 

Our company was founded in 2003.covers an area of 3000sqm,located in Xihu (West Lake) Dis. county,ZHangZhoug,China
we are manufacturer specialized in customized injection molding service and plastic extrusion profiles as customer’s design or sample.
We provide 1 stop Service including prototyping of preprodcution parts,tool design and build,parts production and assembly.We have professional engineering team over 10 years experience of plastic injection mold design and plastic injection molding process.
The products made by us widely used in household electrical appliances,gym equipment ,led lamps,automotive industry,packing industry and other fields.We can customize all kinds of Engineering plastics products according to our customers’ drawings or samples.

with Professional technicians and rich experience we have established CHINAMFG business relationships with customers spread worldwidely,Mainly in Europe,South America and North America.

We are looking CHINAMFG to forming successful business relationships with new clients in the near future.
Please feel free to contact us,We believe we will be your good business partner !

Our advantange:

1. Professional and experienced engineering and manufacturing.
2. One-stop manufacturing service
3. Custom design and size as customer requirements
4.Manufacturer: over 10 years production experience
5.Competitive Price, High quality, Fast Delivery
 

FAQ

Q1. Are you a trading company or a manufacturer?

     We are a manufacturer.

Q2. What kind of trade terms can you do?

        EX-WORKS,FOB,CIF,DDP, DDU
 
Q3. Can I test my idea/component before committing to mould tool manufacture?

     Yes, we can make 3D samples for test functional evaluations.

Q4. Can you assure the quality ?
   
      Yes ,We have a professional quality inspection department,pre production  sample  before mass production,final inspection before shipment.
  
Q5. Do you support OEM ?
 
    Yes, we can produce by technical drawings or samples. 

Q6.What type of plastic is best for my design/component?

   Materials selection depends on the application of your design and the environment in which it will function. We are very glad to  discuss the alternatives and give you  best suggestions .
 
Q7. How about your delivery time?
 
   Generally, it take 25 days for make mold.mass production depending on order qty.

Q8.How to slove the quality problem after sale?

please take photos&video of the problem and send us,we will make a solution for you within 24hours after we confirm the problem.
we will be responsible for our products quality.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: ABS/PP/PA6/PC/POM
Application: Medical, Household, Electronics, Automotive, Agricultural
Drawing Format: Dwg .Step .Igs
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

What are the typical tolerances and quality standards for injection molded parts?

When it comes to injection molded parts, the tolerances and quality standards can vary depending on several factors, including the specific application, industry requirements, and the capabilities of the injection molding process. Here are some general considerations regarding tolerances and quality standards:

Tolerances:

The tolerances for injection molded parts typically refer to the allowable deviation from the intended design dimensions. These tolerances are influenced by various factors, including the part geometry, material properties, mold design, and process capabilities. It’s important to note that achieving tighter tolerances often requires more precise tooling, tighter process control, and additional post-processing steps. Here are some common types of tolerances found in injection molding:

1. Dimensional Tolerances:

Dimensional tolerances define the acceptable range of variation for linear dimensions, such as length, width, height, and diameter. The specific tolerances depend on the part’s critical dimensions and functional requirements. Typical dimensional tolerances for injection molded parts can range from +/- 0.05 mm to +/- 0.5 mm or even tighter, depending on the complexity of the part and the process capabilities.

2. Geometric Tolerances:

Geometric tolerances specify the allowable variation in shape, form, and orientation of features on the part. These tolerances are often expressed using symbols and control the relationships between various geometric elements. Common geometric tolerances include flatness, straightness, circularity, concentricity, perpendicularity, and angularity. The specific geometric tolerances depend on the part’s design requirements and the manufacturing capabilities.

3. Surface Finish Tolerances:

Surface finish tolerances define the acceptable variation in the texture, roughness, and appearance of the part’s surfaces. The surface finish requirements are typically specified using roughness parameters, such as Ra (arithmetical average roughness) or Rz (maximum height of the roughness profile). The specific surface finish tolerances depend on the part’s aesthetic requirements, functional needs, and the material being used.

Quality Standards:

In addition to tolerances, injection molded parts are subject to various quality standards that ensure their performance, reliability, and consistency. These standards may be industry-specific or based on international standards organizations. Here are some commonly referenced quality standards for injection molded parts:

1. ISO 9001:

The ISO 9001 standard is a widely recognized quality management system that establishes criteria for the overall quality control and management of an organization. Injection molding companies often seek ISO 9001 certification to demonstrate their commitment to quality and adherence to standardized processes for design, production, and customer satisfaction.

2. ISO 13485:

ISO 13485 is a specific quality management system standard for medical devices. Injection molded parts used in the medical industry must adhere to this standard to ensure they meet the stringent quality requirements for safety, efficacy, and regulatory compliance.

3. Automotive Industry Standards:

The automotive industry has its own set of quality standards, such as ISO/TS 16949 (now IATF 16949), which focuses on the quality management system for automotive suppliers. These standards encompass requirements for product design, development, production, installation, and servicing, ensuring the quality and reliability of injection molded parts used in automobiles.

4. Industry-Specific Standards:

Various industries may have specific quality standards or guidelines that pertain to injection molded parts. For example, the aerospace industry may reference standards like AS9100, while the electronics industry may adhere to standards such as IPC-A-610 for acceptability of electronic assemblies.

It’s important to note that the specific tolerances and quality standards for injection molded parts can vary significantly depending on the application and industry requirements. Design engineers and manufacturers work together to define the appropriate tolerances and quality standards based on the functional requirements, cost considerations, and the capabilities of the injection molding process.

Can you provide guidance on the selection of injection molded materials based on application requirements?

Yes, I can provide guidance on the selection of injection molded materials based on application requirements. The choice of material for injection molding plays a critical role in determining the performance, durability, and functionality of the molded parts. Here’s a detailed explanation of the factors to consider and the guidance for selecting the appropriate material:

1. Mechanical Properties:

Consider the mechanical properties required for the application, such as strength, stiffness, impact resistance, and wear resistance. Different materials have varying mechanical characteristics, and selecting a material with suitable properties is crucial. For example, engineering thermoplastics like ABS, PC, or nylon offer high strength and impact resistance, while materials like PEEK or ULTEM provide exceptional mechanical performance at elevated temperatures.

2. Chemical Resistance:

If the part will be exposed to chemicals, consider the chemical resistance of the material. Some materials, like PVC or PTFE, exhibit excellent resistance to a wide range of chemicals, while others may be susceptible to degradation or swelling. Ensure that the selected material can withstand the specific chemicals it will encounter in the application environment.

3. Thermal Properties:

Evaluate the operating temperature range of the application and choose a material with suitable thermal properties. Materials like PPS, PEEK, or LCP offer excellent heat resistance, while others may have limited temperature capabilities. Consider factors such as the maximum temperature, thermal stability, coefficient of thermal expansion, and heat transfer requirements of the part.

4. Electrical Properties:

For electrical or electronic applications, consider the electrical properties of the material. Materials like PBT or PPS offer good electrical insulation properties, while others may have conductive or dissipative characteristics. Determine the required dielectric strength, electrical conductivity, surface resistivity, and other relevant electrical properties for the application.

5. Environmental Conditions:

Assess the environmental conditions the part will be exposed to, such as humidity, UV exposure, outdoor weathering, or extreme temperatures. Some materials, like ASA or HDPE, have excellent weatherability and UV resistance, while others may degrade or become brittle under harsh conditions. Choose a material that can withstand the specific environmental factors to ensure long-term performance and durability.

6. Regulatory Compliance:

Consider any regulatory requirements or industry standards that the material must meet. Certain applications, such as those in the medical or food industries, may require materials that are FDA-approved or comply with specific certifications. Ensure that the selected material meets the necessary regulatory and safety standards for the intended application.

7. Cost Considerations:

Evaluate the cost implications associated with the material selection. Different materials have varying costs, and the material choice should align with the project budget. Consider not only the material cost per unit but also factors like tooling expenses, production efficiency, and the overall lifecycle cost of the part.

8. Material Availability and Processing:

Check the availability of the material and consider its processability in injection molding. Ensure that the material is readily available from suppliers and suitable for the specific injection molding process parameters, such as melt flow rate, moldability, and compatibility with the chosen molding equipment.

9. Material Testing and Validation:

Perform material testing and validation to ensure that the selected material meets the required specifications and performance criteria. Conduct mechanical, thermal, chemical, and electrical tests to verify the material’s properties and behavior under application-specific conditions.

Consider consulting with material suppliers, engineers, or experts in injection molding to get further guidance and recommendations based on the specific application requirements. They can provide valuable insights into material selection based on their expertise and knowledge of industry standards and best practices.

By carefully considering these factors and guidance, you can select the most appropriate material for injection molding that meets the specific application requirements, ensuring optimal performance, durability, and functionality of the molded parts.

Can you explain the advantages of using injection molding for producing parts?

Injection molding offers several advantages as a manufacturing process for producing parts. It is a widely used technique for creating plastic components with high precision, efficiency, and scalability. Here’s a detailed explanation of the advantages of using injection molding:

1. High Precision and Complexity:

Injection molding allows for the production of parts with high precision and intricate details. The molds used in injection molding are capable of creating complex shapes, fine features, and precise dimensions. This level of precision enables the manufacturing of parts with tight tolerances, ensuring consistent quality and fit.

2. Cost-Effective Mass Production:

Injection molding is a highly efficient process suitable for large-scale production. Once the initial setup, including mold design and fabrication, is completed, the manufacturing process can be automated. Injection molding machines can produce parts rapidly and continuously, resulting in fast and cost-effective production of identical parts. The ability to produce parts in high volumes helps reduce per-unit costs, making injection molding economically advantageous for mass production.

3. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Various types of plastics can be used in injection molding, including commodity plastics, engineering plastics, and high-performance plastics. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency.

4. Strength and Durability:

Injection molded parts can exhibit excellent strength and durability. During the injection molding process, the molten material is uniformly distributed within the mold, resulting in consistent mechanical properties throughout the part. This uniformity enhances the structural integrity of the part, making it suitable for applications that require strength and longevity.

5. Minimal Post-Processing:

Injection molded parts often require minimal post-processing. The high precision and quality achieved during the molding process reduce the need for extensive additional machining or finishing operations. The parts typically come out of the mold with the desired shape, surface finish, and dimensional accuracy, reducing time and costs associated with post-processing activities.

6. Design Flexibility:

Injection molding offers significant design flexibility. The process can accommodate complex geometries, intricate details, undercuts, thin walls, and other design features that may be challenging or costly with other manufacturing methods. Designers have the freedom to create parts with unique shapes and functional requirements. Injection molding also allows for the integration of multiple components or features into a single part, reducing assembly requirements and potential points of failure.

7. Rapid Prototyping:

Injection molding is also used for rapid prototyping. By quickly producing functional prototypes using the same process and materials as the final production parts, designers and engineers can evaluate the part’s form, fit, and function early in the development cycle. Rapid prototyping with injection molding enables faster iterations, reduces development time, and helps identify and address design issues before committing to full-scale production.

8. Environmental Considerations:

Injection molding can have environmental advantages compared to other manufacturing processes. The process generates minimal waste as the excess material can be recycled and reused. Injection molded parts also tend to be lightweight, which can contribute to energy savings during transportation and reduce the overall environmental impact.

In summary, injection molding offers several advantages for producing parts. It provides high precision and complexity, cost-effective mass production, material versatility, strength and durability, minimal post-processing requirements, design flexibility, rapid prototyping capabilities, and environmental considerations. These advantages make injection molding a highly desirable manufacturing process for a wide range of industries, enabling the production of high-quality plastic parts efficiently and economically.

China best Plastic Injection Molding Service Custom Nylon ABS Rubber Injection Molded CHINAMFG  China best Plastic Injection Molding Service Custom Nylon ABS Rubber Injection Molded CHINAMFG
editor by CX 2024-02-21

China Professional Custom Injection Molded Clear CHINAMFG Manufacturer Injection Molded Part

Product Description

 

Product Description

PLASTIC INJECTION MOLDING
 

Item

custom injection molded clear CHINAMFG manufacturer injection molded part

Material

ABS, PC/ABS, PP, PC, POM(Delrin), Nylon 6, Nylon 6/6, PA 12, HDPE, LDPE, PS(HIPS), Acrylic, SAN/AS, ASA, PVC, UPVC, TPE, TPR, PU, TPU, PET, PEI(Ultem), PSU, PPSU, PPE/PS, PTFE, GPPS, PPO, PES, CA, etc.

Certificate

IATF 16949:2016 / ISO 9001:2015 / ISO 45001:2018 / ISO 14001:2015 /REACH/ROHS/MSDS/LFGB

Drawing Format

.stp / .step / .igs /.CHINAMFG /.dwg / .pdf

Parameters

Inch, centimeter, millimeter, etc.

Surface Treatment

Matte, Common polishing, Mirror polishing, Texture, Plating, Power Coating (Painting), Laser Engraving, Brushing, Marbling, Printing etc.

Mold Material

S136H, 718H, NAK80, P20, H13, etc.

Mold Life-cycle

100,000-500,000 shots.

Many kinds of raw material are frequently used, such as ABS, PC/ABS, PP, PC, POM, Nylon (PA6, PA66, PA12), PE, PS, Acrylic, SAN/AS, ASA, PET, PVC, TPE, TPR, TPU, TPV. We can produce plastic products in some special materials, such as PBT, PEI (Ultem), PEEK, PSU, PPSU, PPE, PPE/PS, PTFE , GPPS, PPO, PES, PPA, CA, DMC, PF, etc.
We can also add some additives according to the functional requirements of the project to improve the performance of the product, such as Reinforcing Agents, Flame Retardants, Fillers, Functional additives, Elastomer toughening agents, Weathering agents, Reflective agents, etc…

There are some CHINAMFG for reference:

Company Profile

Plastic injection molding is the preferred process for manufacturing plastic parts, as it is ideal for producing high volumes of low-cost CHINAMFG with high tolerance precision, repeatability and little to no finishing required.

We have 18 sets injection molding machines, includes the multi-color injection molding machines, the biggest 1 is 1250T . Our capability for Plastic part is up to 1500mm.

Supply Ability

Workflow after Customer Order is Placed

Mould Design Process

Step 1 : Analyze the product drawings
Step 2 :Create the Design for Manufacturability (DFM) report
Step 3 : Make the mould flow analysis
Step 4 : Design tooling drawings
Step 5 : Mould making

Once the mould making is finished, we’ll make several pieces of pre-production samples for test, if the dimensions are correct, then we will send the samples to customers for final confirmation. If the test failed, we will modify the mould or adjust the molding parameter to make new samples, and test it again. Once the samples are approval by customers, we will purchase the raw material and making quality inspection. Then mixing material, molding and trimming, we will make many times of inspection during the production. Finally we will arrange the assembly and packing. After whole order is ready, we will send the packing list to customer to arrange the shipment.

We can also provide double-color and triple-color injection molding
 

Double-color injection molding and triple-color injection molding process can make the appearance of the product more beautiful, and easy to change the color without painting, but the cost is expensive and the technical requirements are high.

Related products:

And we have10,000 level dust-free production workshop for biomedical products.

Neway Highly Welcome Your Own Custom Designs !!!

 

Why choose us

We seriously take care of the quality control from IQC to OQC, throughout each step of the production.

Let us show you our quality control:

For raw materials, we’ll do the IQC in time. All materials are procured only from the verified suppliers, who have implemented and maintain certified quality management systems in their plants. With full certificates, such as RoHs, Reach, MSDS, FDA, LFGB, UL, EN549, BPA free, EN71, and so on;

For pre-production samples, we’ll provide several pieces to our clients for assembly and function testing. We will seal the samples in time once they’re approval. For Bulk Production, we’ll do the IPQCS & PQC (Multiple Sampling Inspection) during production and we’ll do the FQC (Sampling Inspection) after deburr or breaking sharp edges. In order to timely find problems, solve problems, reduce defective products, reduce manufacturing costs.

After packing and assembling, we’ll do the OQC (Sampling Inspection) to make sure the final goods are qualified.

 

And attach the injection molding CHINAMFG inspection report for reference:

Good reviews of customer

Packaging & Shipping

 

 

FAQ

Q1. How soon can I get a precise quotation for custom plastic injection part?
A1: Please send us your inquiry by email or Alibaba TM message. Once we confirm the design (Feature details with parameters), material, color, qty, we can provide quotation within 24 HOURS.

Q2: Can I get a free sample, how long will it take?
A2: a. For standard products we have in stock, YES for free sample, but the express fee will be charged in advance.

Mostly, it takes 3-10 days.
b. For custom products, sample fee is determined by the detailed sample requirements. Normally, it takes 7-15 days.

Q3: Can you make custom parts based on my sample?
A3: Yes, you can send the sample to us by express and we will evaluate the sample, scan the features and draft 3D drawing for production.

Q4: What does your OEM service include?
A4: We follow up your request from the design idea to the mass production.
a. You can provide 3D drawing to us, then our engineers and production teams evaluate the design and quote you the precise cost.
b. If you don’t have 3D drawing, you can provide 2D drawing or draft with features details with full dimensions, we can draft 3D drawing for you with fair charge.
c. You can also customize Logo on the product surface, package, color box or carton.
d. We also provide assembly service for the OEM parts.

Q5. What is your payment term?
A5: We accept T/T, Paypal, Western Union, L/C, Alibaba Trade Assurance.

Work with Neway, your business is in safe and your money is in safe!

If you can dream it, we can build it!
 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Plastic
Application: Medical, Household, Electronics, Automotive
Certification: TS16949, RoHS, ISO, Reach/ MSDS/LFGB/F D a
Sample Time: 3-7 Days
Prototype Process: SLA, Vacuum Forming, CNC, etc.
Molding Process: Injection Molding
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

What is the impact of material selection on the performance and durability of injection molded parts?

The material selection for injection molded parts has a significant impact on their performance and durability. The choice of material influences various key factors, including mechanical properties, chemical resistance, thermal stability, dimensional stability, and overall part functionality. Here’s a detailed explanation of the impact of material selection on the performance and durability of injection molded parts:

Mechanical Properties:

The mechanical properties of the material directly affect the part’s strength, stiffness, impact resistance, and fatigue life. Different materials exhibit varying levels of tensile strength, flexural strength, modulus of elasticity, and elongation at break. The selection of a material with appropriate mechanical properties ensures that the injection molded part can withstand the applied forces, vibrations, and operational stresses without failure or deformation.

Chemical Resistance:

The material’s resistance to chemicals and solvents is crucial in applications where the part comes into contact with aggressive substances. Certain materials, such as engineering thermoplastics like ABS (Acrylonitrile Butadiene Styrene) or PEEK (Polyether Ether Ketone), exhibit excellent chemical resistance. Choosing a material with the appropriate chemical resistance ensures that the injection molded part maintains its integrity and functionality when exposed to specific chemicals or environments.

Thermal Stability:

The thermal stability of the material is essential in applications that involve exposure to high temperatures or thermal cycling. Different materials have varying melting points, glass transition temperatures, and heat deflection temperatures. Selecting a material with suitable thermal stability ensures that the injection molded part can withstand the anticipated temperature variations without dimensional changes, warping, or degradation of mechanical properties.

Dimensional Stability:

The dimensional stability of the material is critical in applications where precise tolerances and dimensional accuracy are required. Some materials, such as engineering thermoplastics or filled polymers, exhibit lower coefficients of thermal expansion, minimizing the part’s dimensional changes with temperature variations. Choosing a material with good dimensional stability helps ensure that the injection molded part maintains its shape, size, and critical dimensions over a wide range of operating temperatures.

Part Functionality:

The material selection directly impacts the functionality and performance of the injection molded part. Different materials offer unique properties that can be tailored to meet specific application requirements. For example, materials like polycarbonate (PC) or polypropylene (PP) offer excellent transparency, making them suitable for applications requiring optical clarity, while materials like polyamide (PA) or polyoxymethylene (POM) provide low friction and wear resistance, making them suitable for moving or sliding parts.

Cycle Time and Processability:

The material selection can also affect the cycle time and processability of injection molding. Different materials have different melt viscosities and flow characteristics, which influence the filling and cooling times during the molding process. Materials with good flow properties can fill complex mold geometries more easily, reducing the cycle time and improving productivity. It’s important to select a material that can be effectively processed using the available injection molding equipment and techniques.

Cost Considerations:

The material selection also impacts the overall cost of the injection molded part. Different materials have varying costs, and selecting the most suitable material involves considering factors such as material availability, tooling requirements, processing conditions, and the desired performance characteristics. Balancing the performance requirements with cost considerations is crucial in achieving an optimal material selection that meets the performance and durability requirements within the budget constraints.

Overall, material selection plays a critical role in determining the performance, durability, and functionality of injection molded parts. Careful consideration of mechanical properties, chemical resistance, thermal stability, dimensional stability, part functionality, cycle time, processability, and cost factors helps ensure that the chosen material meets the specific application requirements and delivers the desired performance and durability over the part’s intended service life.

How do innovations and advancements in injection molding technology influence part design and production?

Innovations and advancements in injection molding technology have a significant influence on part design and production. These advancements introduce new capabilities, enhance process efficiency, improve part quality, and expand the range of applications for injection molded parts. Here’s a detailed explanation of how innovations and advancements in injection molding technology influence part design and production:

Design Freedom:

Advancements in injection molding technology have expanded the design freedom for part designers. With the introduction of advanced software tools, such as computer-aided design (CAD) and simulation software, designers can create complex geometries, intricate features, and highly optimized designs. The use of 3D modeling and simulation allows for the identification and resolution of potential design issues before manufacturing. This design freedom enables the production of innovative and highly functional parts that were previously challenging or impossible to manufacture using conventional techniques.

Improved Precision and Accuracy:

Innovations in injection molding technology have led to improved precision and accuracy in part production. High-precision molds, advanced control systems, and closed-loop feedback mechanisms ensure precise control over the molding process variables, such as temperature, pressure, and cooling. This level of control results in parts with tight tolerances, consistent dimensions, and improved surface finishes. Enhanced precision and accuracy enable the production of parts that meet strict quality requirements, fit seamlessly with other components, and perform reliably in their intended applications.

Material Advancements:

The development of new materials and material combinations specifically formulated for injection molding has expanded the range of properties available to part designers. Innovations in materials include high-performance engineering thermoplastics, bio-based polymers, reinforced composites, and specialty materials with unique properties. These advancements allow for the production of parts with enhanced mechanical strength, improved chemical resistance, superior heat resistance, and customized performance characteristics. Material advancements in injection molding technology enable the creation of parts that can withstand demanding operating conditions and meet the specific requirements of various industries.

Process Efficiency:

Innovations in injection molding technology have introduced process optimizations that improve efficiency and productivity. Advanced automation, robotics, and real-time monitoring systems enable faster cycle times, reduced scrap rates, and increased production throughput. Additionally, innovations like multi-cavity molds, hot-runner systems, and micro-injection molding techniques improve material utilization and reduce production costs. Increased process efficiency allows for the economical production of high-quality parts in larger quantities, meeting the demands of industries that require high-volume production.

Overmolding and Multi-Material Molding:

Advancements in injection molding technology have enabled the integration of multiple materials or components into a single part through overmolding or multi-material molding processes. Overmolding allows for the encapsulation of inserts, such as metal components or electronics, with a thermoplastic material in a single molding cycle. This enables the creation of parts with improved functionality, enhanced aesthetics, and simplified assembly. Multi-material molding techniques, such as co-injection molding or sequential injection molding, enable the production of parts with multiple colors, varying material properties, or complex material combinations. These capabilities expand the design possibilities and allow for the creation of innovative parts with unique features and performance characteristics.

Additive Manufacturing Integration:

The integration of additive manufacturing, commonly known as 3D printing, with injection molding technology has opened up new possibilities for part design and production. Additive manufacturing can be used to create complex mold geometries, conformal cooling channels, or custom inserts, which enhance part quality, reduce cycle times, and improve part performance. By combining additive manufacturing and injection molding, designers can explore new design concepts, produce rapid prototypes, and efficiently manufacture customized or low-volume production runs.

Sustainability and Eco-Friendly Solutions:

Advancements in injection molding technology have also focused on sustainability and eco-friendly solutions. This includes the development of biodegradable and compostable materials, recycling technologies for post-consumer and post-industrial waste, and energy-efficient molding processes. These advancements enable the production of environmentally friendly parts that contribute to reducing the carbon footprint and meeting sustainability goals.

Overall, innovations and advancements in injection molding technology have revolutionized part design and production. They have expanded design possibilities, improved precision and accuracy, introduced new materials, enhanced process efficiency, enabled overmolding and multi-material molding, integrated additive manufacturing, and promoted sustainability. These advancements empower part designers and manufacturers to create highly functional, complex, and customized parts that meet the demands of various industries and contribute to overall process efficiency and sustainability.

Are there different types of injection molded parts, such as automotive components or medical devices?

Yes, there are various types of injection molded parts that are specifically designed for different industries and applications. Injection molding is a versatile manufacturing process capable of producing complex and precise parts with high efficiency and repeatability. Here are some examples of different types of injection molded parts:

1. Automotive Components:

Injection molding plays a critical role in the automotive industry, where it is used to manufacture a wide range of components. Some common injection molded automotive parts include:

  • Interior components: Dashboard panels, door handles, trim pieces, instrument clusters, and center consoles.
  • Exterior components: Bumpers, grilles, body panels, mirror housings, and wheel covers.
  • Under-the-hood components: Engine covers, air intake manifolds, cooling system parts, and battery housings.
  • Electrical components: Connectors, switches, sensor housings, and wiring harnesses.
  • Seating components: Seat frames, headrests, armrests, and seatbelt components.

2. Medical Devices:

The medical industry relies on injection molding for the production of a wide range of medical devices and components. These parts often require high precision, biocompatibility, and sterilizability. Examples of injection molded medical devices include:

  • Syringes and injection pens
  • Implantable devices: Catheters, pacemaker components, orthopedic implants, and surgical instruments.
  • Diagnostic equipment: Test tubes, specimen containers, and laboratory consumables.
  • Disposable medical products: IV components, respiratory masks, blood collection tubes, and wound care products.

3. Consumer Products:

Injection molding is widely used in the production of consumer products due to its ability to mass-produce parts with high efficiency. Examples of injection molded consumer products include:

  • Household appliances: Television and audio equipment components, refrigerator parts, and vacuum cleaner components.
  • Electronics: Mobile phone cases, computer keyboard and mouse, camera components, and power adapters.
  • Toys and games: Action figures, building blocks, puzzles, and board game components.
  • Personal care products: Toothbrushes, razor handles, cosmetic containers, and hairdryer components.
  • Home improvement products: Light switch covers, door handles, power tool housings, and storage containers.

4. Packaging:

Injection molding is widely used in the packaging industry to produce a wide variety of plastic containers, caps, closures, and packaging components. Some examples include:

  • Bottles and containers for food, beverages, personal care products, and household chemicals.
  • Caps and closures for bottles and jars.
  • Thin-walled packaging for food products such as trays, cups, and lids.
  • Blister packs and clamshell packaging for retail products.
  • Packaging inserts and protective foam components.

5. Electronics and Electrical Components:

Injection molding is widely used in the electronics industry for the production of various components and enclosures. Examples include:

  • Connectors and housings for electrical and electronic devices.
  • Switches, buttons, and control panels.
  • PCB (Printed Circuit Board) components and enclosures.
  • LED (Light-Emitting Diode) components and light fixtures.
  • Power adapters and chargers.

These are just a few examples of the different types of injection molded parts. The versatility of injection molding allows for the production of parts in various industries, ranging from automotive and medical to consumer products, packaging, electronics, and more. The specific design requirements and performance characteristics of each part determine the choice of materials, tooling, and manufacturing processes for injection molding.

China Professional Custom Injection Molded Clear CHINAMFG Manufacturer Injection Molded Part  China Professional Custom Injection Molded Clear CHINAMFG Manufacturer Injection Molded Part
editor by CX 2024-02-21

China manufacturer Plastic Injection Molding Service Custom Nylon ABS Rubber Injection Molded CHINAMFG

Product Description

 Produt Description
 

Product name  Plastic Injection Molding  service  custom Nylon ABS Rubber Injection Molded Plastic Parts
Product material ABS, PC, PP, PS, POM,PBT,PVC,PA6,PA66,PA66+30%GF,
PTFE,PC+ABS,TPE,etc
Color any colour available,will according customer’s request
Size as per your drawing or the sample
Tolerance +/-0.1MM
surface finish Color painting,Texture,Silk-printing,Vacuum coating,rubber coating, etc.
Logo accept customized
Application field Various plastic injection molded parts for various industrial,electronic and automotive applications
MOQ Negotiable
Mold Cavity Single or Multi-cavity
Mold life  5 shots
runner system hot runner and cold runner
package standard export carton packing ,or according your request.
Payment terms For mold: 50% advanceT/T payment, balance will be after you confirm our samples; For production: 30%T/T, balance will be after received our B/L copy
lead time 
25-35 days for mould,mass production according the order quantity

Detailed products  

  

Production Procedure 

Our company was founded in 2003.covers an area of 3000sqm,located in Xihu (West Lake) Dis. county,ZHangZhoug,China
we are manufacturer specialized in customized injection molding service and plastic extrusion profiles as customer’s design or sample.
We provide 1 stop Service including prototyping of preprodcution parts,tool design and build,parts production and assembly.We have professional engineering team over 10 years experience of plastic injection mold design and plastic injection molding process.
The products made by us widely used in household electrical appliances,gym equipment ,led lamps,automotive industry,packing industry and other fields.We can customize all kinds of Engineering plastics products according to our customers’ drawings or samples.

with Professional technicians and rich experience we have established CHINAMFG business relationships with customers spread worldwidely,Mainly in Europe,South America and North America.

We are looking CHINAMFG to forming successful business relationships with new clients in the near future.
Please feel free to contact us,We believe we will be your good business partner !

Our advantange:

1. Professional and experienced engineering and manufacturing.
2. One-stop manufacturing service
3. Custom design and size as customer requirements
4.Manufacturer: over 10 years production experience
5.Competitive Price, High quality, Fast Delivery
 

FAQ

Q1. Are you a trading company or a manufacturer?

     We are a manufacturer.

Q2. What kind of trade terms can you do?

        EX-WORKS,FOB,CIF,DDP, DDU
 
Q3. Can I test my idea/component before committing to mould tool manufacture?

     Yes, we can make 3D samples for test functional evaluations.

Q4. Can you assure the quality ?
   
      Yes ,We have a professional quality inspection department,pre production  sample  before mass production,final inspection before shipment.
  
Q5. Do you support OEM ?
 
    Yes, we can produce by technical drawings or samples. 

Q6.What type of plastic is best for my design/component?

   Materials selection depends on the application of your design and the environment in which it will function. We are very glad to  discuss the alternatives and give you  best suggestions .
 
Q7. How about your delivery time?
 
   Generally, it take 25 days for make mold.mass production depending on order qty.

Q8.How to slove the quality problem after sale?

please take photos&video of the problem and send us,we will make a solution for you within 24hours after we confirm the problem.
we will be responsible for our products quality.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: ABS/PP/PA6/PC/POM
Application: Medical, Household, Electronics, Automotive, Agricultural
Drawing Format: Dwg .Step .Igs
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

What factors influence the design and tooling of injection molded parts for specific applications?

Several factors play a crucial role in influencing the design and tooling of injection molded parts for specific applications. The following are key factors that need to be considered:

1. Functionality and Performance Requirements:

The intended functionality and performance requirements of the part heavily influence its design and tooling. Factors such as strength, durability, dimensional accuracy, chemical resistance, and temperature resistance are essential considerations. The part’s design must be optimized to meet these requirements while ensuring proper functionality and performance in its intended application.

2. Material Selection:

The choice of material for injection molding depends on the specific application and its requirements. Different materials have varying properties, such as strength, flexibility, heat resistance, chemical resistance, and electrical conductivity. The material selection influences the design and tooling considerations, as the part’s geometry and structure must be compatible with the selected material’s properties.

3. Part Complexity and Geometry:

The complexity and geometry of the part significantly impact its design and tooling. Complex parts with intricate features, undercuts, thin walls, or varying thicknesses may require specialized tooling and mold designs. The part’s geometry must be carefully considered to ensure proper mold filling, cooling, ejection, and dimensional stability during the injection molding process.

4. Manufacturing Cost and Efficiency:

The design and tooling of injection molded parts are also influenced by manufacturing cost and efficiency considerations. Design features that reduce material usage, minimize cycle time, and optimize the use of the injection molding machine can help lower production costs. Efficient tooling designs, such as multi-cavity molds or family molds, can increase productivity and reduce per-part costs.

5. Moldability and Mold Design:

The moldability of the part, including factors like draft angles, wall thickness, and gate location, affects the mold design. The part should be designed to facilitate proper flow of molten plastic during injection, ensure uniform cooling, and allow for easy part ejection. The tooling design, such as the number of cavities, gate design, and cooling system, is influenced by the part’s moldability requirements.

6. Regulatory and Industry Standards:

Specific applications, especially in industries like automotive, aerospace, and medical, may have regulatory and industry standards that influence the design and tooling considerations. Compliance with these standards regarding materials, dimensions, safety, and performance requirements is essential and may impact the design choices and tooling specifications.

7. Assembly and Integration:

If the injection molded part needs to be assembled or integrated with other components or systems, the design and tooling must consider the assembly process and requirements. Features such as snap fits, interlocking mechanisms, or specific mating surfacescan be incorporated into the part’s design to facilitate efficient assembly and integration.

8. Aesthetics and Branding:

In consumer products and certain industries, the aesthetic appearance and branding of the part may be crucial. Design considerations such as surface finish, texture, color, and the inclusion of logos or branding elements may be important factors that influence the design and tooling decisions.

Overall, the design and tooling of injection molded parts for specific applications are influenced by a combination of functional requirements, material considerations, part complexity, manufacturing cost and efficiency, moldability, regulatory standards, assembly requirements, and aesthetic factors. It is essential to carefully consider these factors to achieve optimal part design and successful injection molding production.

What is the role of design software and CAD/CAM technology in optimizing injection molded parts?

Design software and CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing) technology play a crucial role in optimizing injection molded parts. They provide powerful tools and capabilities that enable designers and engineers to improve the efficiency, functionality, and quality of the parts. Here’s a detailed explanation of the role of design software and CAD/CAM technology in optimizing injection molded parts:

1. Design Visualization and Validation:

Design software and CAD tools allow designers to create 3D models of injection molded parts, providing a visual representation of the product before manufacturing. These tools enable designers to validate and optimize the part design by simulating its behavior under various conditions, such as stress analysis, fluid flow, or thermal performance. This visualization and validation process help identify potential issues or areas for improvement, leading to optimized part designs.

2. Design Optimization:

Design software and CAD/CAM technology provide powerful optimization tools that enable designers to refine and improve the performance of injection molded parts. These tools include features such as parametric modeling, shape optimization, and topology optimization. Parametric modeling allows for quick iteration and exploration of design variations, while shape and topology optimization algorithms help identify the most efficient and lightweight designs that meet the required functional and structural criteria.

3. Mold Design:

Design software and CAD/CAM technology are instrumental in the design of injection molds used to produce the molded parts. Mold design involves creating the 3D geometry of the mold components, such as the core, cavity, runner system, and cooling channels. CAD/CAM tools provide specialized features for mold design, including mold flow analysis, which simulates the injection molding process to optimize mold filling, cooling, and part ejection. This ensures the production of high-quality parts with minimal defects and cycle time.

4. Design for Manufacturability:

Design software and CAD/CAM technology facilitate the implementation of Design for Manufacturability (DFM) principles in the design process. DFM focuses on designing parts that are optimized for efficient and cost-effective manufacturing. CAD tools provide features that help identify and address potential manufacturing issues early in the design stage, such as draft angles, wall thickness variations, or parting line considerations. By considering manufacturing constraints during the design phase, injection molded parts can be optimized for improved manufacturability, reduced production costs, and shorter lead times.

5. Prototyping and Iterative Design:

Design software and CAD/CAM technology enable the rapid prototyping of injection molded parts through techniques such as 3D printing or CNC machining. This allows designers to physically test and evaluate the functionality, fit, and aesthetics of the parts before committing to mass production. CAD/CAM tools support iterative design processes by facilitating quick modifications and adjustments based on prototyping feedback, resulting in optimized part designs and reduced development cycles.

6. Collaboration and Communication:

Design software and CAD/CAM technology provide a platform for collaboration and communication among designers, engineers, and other stakeholders involved in the development of injection molded parts. These tools allow for easy sharing, reviewing, and commenting on designs, ensuring effective collaboration and streamlining the decision-making process. By facilitating clear communication and feedback exchange, design software and CAD/CAM technology contribute to optimized part designs and efficient development workflows.

7. Documentation and Manufacturing Instructions:

Design software and CAD/CAM technology assist in generating comprehensive documentation and manufacturing instructions for the production of injection molded parts. These tools enable the creation of detailed drawings, specifications, and assembly instructions that guide the manufacturing process. Accurate and well-documented designs help ensure consistency, quality, and repeatability in the production of injection molded parts.

Overall, design software and CAD/CAM technology are instrumental in optimizing injection molded parts. They enable designers and engineers to visualize, validate, optimize, and communicate designs, leading to improved part performance, manufacturability, and overall quality.

Can you describe the range of materials that can be used for injection molding?

Injection molding offers a wide range of materials that can be used to produce parts with diverse properties and characteristics. The choice of material depends on the specific requirements of the application, including mechanical properties, chemical resistance, thermal stability, transparency, and cost. Here’s a description of the range of materials commonly used for injection molding:

1. Thermoplastics:

Thermoplastics are the most commonly used materials in injection molding due to their versatility, ease of processing, and recyclability. Some commonly used thermoplastics include:

  • Polypropylene (PP): PP is a lightweight and flexible thermoplastic with excellent chemical resistance and low cost. It is widely used in automotive parts, packaging, consumer products, and medical devices.
  • Polyethylene (PE): PE is a versatile thermoplastic with excellent impact strength and chemical resistance. It is used in various applications, including packaging, pipes, automotive components, and toys.
  • Polystyrene (PS): PS is a rigid and transparent thermoplastic with good dimensional stability. It is commonly used in packaging, consumer goods, and disposable products.
  • Polycarbonate (PC): PC is a transparent and impact-resistant thermoplastic with high heat resistance. It finds applications in automotive parts, electronic components, and optical lenses.
  • Acrylonitrile Butadiene Styrene (ABS): ABS is a versatile thermoplastic with a good balance of strength, impact resistance, and heat resistance. It is commonly used in automotive parts, electronic enclosures, and consumer products.
  • Polyvinyl Chloride (PVC): PVC is a durable and flame-resistant thermoplastic with good chemical resistance. It is used in a wide range of applications, including construction, electrical insulation, and medical tubing.
  • Polyethylene Terephthalate (PET): PET is a strong and lightweight thermoplastic with excellent clarity and barrier properties. It is commonly used in packaging, beverage bottles, and textile fibers.

2. Engineering Plastics:

Engineering plastics offer enhanced mechanical properties, heat resistance, and dimensional stability compared to commodity thermoplastics. Some commonly used engineering plastics in injection molding include:

  • Polyamide (PA/Nylon): Nylon is a strong and durable engineering plastic with excellent wear resistance and low friction properties. It is used in automotive components, electrical connectors, and industrial applications.
  • Polycarbonate (PC): PC, mentioned earlier, is also considered an engineering plastic due to its exceptional impact resistance and high-temperature performance.
  • Polyoxymethylene (POM/Acetal): POM is a high-strength engineering plastic with low friction and excellent dimensional stability. It finds applications in gears, bearings, and precision mechanical components.
  • Polyphenylene Sulfide (PPS): PPS is a high-performance engineering plastic with excellent chemical resistance and thermal stability. It is used in electrical and electronic components, automotive parts, and industrial applications.
  • Polyetheretherketone (PEEK): PEEK is a high-performance engineering plastic with exceptional heat resistance, chemical resistance, and mechanical properties. It is commonly used in aerospace, medical, and industrial applications.

3. Thermosetting Plastics:

Thermosetting plastics undergo a chemical crosslinking process during molding, resulting in a rigid and heat-resistant material. Some commonly used thermosetting plastics in injection molding include:

  • Epoxy: Epoxy resins offer excellent chemical resistance and mechanical properties. They are commonly used in electrical components, adhesives, and coatings.
  • Phenolic: Phenolic resins are known for their excellent heat resistance and electrical insulation properties. They find applications in electrical switches, automotive parts, and consumer goods.
  • Urea-formaldehyde (UF) and Melamine-formaldehyde (MF): UF and MF resins are used for molding electrical components, kitchenware, and decorative laminates.

4. Elastomers:

Elastomers, also known as rubber-like materials, are used to produce flexible and elastic parts. They provide excellent resilience, durability, and sealing properties. Some commonly used elastomers in injection molding include:

  • Thermoplastic Elastomers (TPE): TPEs are a class of materials that combine the characteristics of rubber and plastic. They offer flexibility, good compression set, and ease of processing. TPEs find applications in automotive components, consumer products, and medical devices.
  • Silicone: Silicone elastomers provide excellent heat resistance, electrical insulation, and biocompatibility. They are commonly used in medical devices, automotive seals, and household products.
  • Styrene Butadiene Rubber (SBR): SBR is a synthetic elastomer with good abrasion resistance and low-temperature flexibility. It is used in tires, gaskets, and conveyor belts.
  • Ethylene Propylene Diene Monomer (EPDM): EPDM is a durable elastomer with excellent weather resistance and chemical resistance. It finds applications in automotive seals, weatherstripping, and roofing membranes.

5. Composites:

Injection molding can also be used to produce parts made of composite materials, which combine two or more different types of materials to achieve specific properties. Commonly used composite materials in injection molding include:

  • Glass-Fiber Reinforced Plastics (GFRP): GFRP combines glass fibers with thermoplastics or thermosetting resins to enhance mechanical strength, stiffness, and dimensional stability. It is used in automotive components, electrical enclosures, and sporting goods.
  • Carbon-Fiber Reinforced Plastics (CFRP): CFRP combines carbon fibers with thermosetting resins to produce parts with exceptional strength, stiffness, and lightweight properties. It is commonly used in aerospace, automotive, and high-performance sports equipment.
  • Metal-Filled Plastics: Metal-filled plastics incorporate metal particles or fibers into thermoplastics to achieve properties such as conductivity, electromagnetic shielding, or enhanced weight and feel. They are used in electrical connectors, automotive components, and consumer electronics.

These are just a few examples of the materials used in injection molding. There are numerous other specialized materials available, each with its own unique properties, such as flame retardancy, low friction, chemical resistance, or specific certifications for medical or food-contact applications. The selection of the material depends on the desired performance, cost considerations, and regulatory requirements of the specific application.

China manufacturer Plastic Injection Molding Service Custom Nylon ABS Rubber Injection Molded CHINAMFG  China manufacturer Plastic Injection Molding Service Custom Nylon ABS Rubber Injection Molded CHINAMFG
editor by CX 2024-02-20

China manufacturer Custom Injection Molded Clear CHINAMFG Manufacturer Injection Molded Part

Product Description

 

Product Description

PLASTIC INJECTION MOLDING
 

Item

custom injection molded clear CHINAMFG manufacturer injection molded part

Material

ABS, PC/ABS, PP, PC, POM(Delrin), Nylon 6, Nylon 6/6, PA 12, HDPE, LDPE, PS(HIPS), Acrylic, SAN/AS, ASA, PVC, UPVC, TPE, TPR, PU, TPU, PET, PEI(Ultem), PSU, PPSU, PPE/PS, PTFE, GPPS, PPO, PES, CA, etc.

Certificate

IATF 16949:2016 / ISO 9001:2015 / ISO 45001:2018 / ISO 14001:2015 /REACH/ROHS/MSDS/LFGB

Drawing Format

.stp / .step / .igs /.CHINAMFG /.dwg / .pdf

Parameters

Inch, centimeter, millimeter, etc.

Surface Treatment

Matte, Common polishing, Mirror polishing, Texture, Plating, Power Coating (Painting), Laser Engraving, Brushing, Marbling, Printing etc.

Mold Material

S136H, 718H, NAK80, P20, H13, etc.

Mold Life-cycle

100,000-500,000 shots.

Many kinds of raw material are frequently used, such as ABS, PC/ABS, PP, PC, POM, Nylon (PA6, PA66, PA12), PE, PS, Acrylic, SAN/AS, ASA, PET, PVC, TPE, TPR, TPU, TPV. We can produce plastic products in some special materials, such as PBT, PEI (Ultem), PEEK, PSU, PPSU, PPE, PPE/PS, PTFE , GPPS, PPO, PES, PPA, CA, DMC, PF, etc.
We can also add some additives according to the functional requirements of the project to improve the performance of the product, such as Reinforcing Agents, Flame Retardants, Fillers, Functional additives, Elastomer toughening agents, Weathering agents, Reflective agents, etc…

There are some CHINAMFG for reference:

Company Profile

Plastic injection molding is the preferred process for manufacturing plastic parts, as it is ideal for producing high volumes of low-cost CHINAMFG with high tolerance precision, repeatability and little to no finishing required.

We have 18 sets injection molding machines, includes the multi-color injection molding machines, the biggest 1 is 1250T . Our capability for Plastic part is up to 1500mm.

Supply Ability

Workflow after Customer Order is Placed

Mould Design Process

Step 1 : Analyze the product drawings
Step 2 :Create the Design for Manufacturability (DFM) report
Step 3 : Make the mould flow analysis
Step 4 : Design tooling drawings
Step 5 : Mould making

Once the mould making is finished, we’ll make several pieces of pre-production samples for test, if the dimensions are correct, then we will send the samples to customers for final confirmation. If the test failed, we will modify the mould or adjust the molding parameter to make new samples, and test it again. Once the samples are approval by customers, we will purchase the raw material and making quality inspection. Then mixing material, molding and trimming, we will make many times of inspection during the production. Finally we will arrange the assembly and packing. After whole order is ready, we will send the packing list to customer to arrange the shipment.

We can also provide double-color and triple-color injection molding
 

Double-color injection molding and triple-color injection molding process can make the appearance of the product more beautiful, and easy to change the color without painting, but the cost is expensive and the technical requirements are high.

Related products:

And we have10,000 level dust-free production workshop for biomedical products.

Neway Highly Welcome Your Own Custom Designs !!!

 

Why choose us

We seriously take care of the quality control from IQC to OQC, throughout each step of the production.

Let us show you our quality control:

For raw materials, we’ll do the IQC in time. All materials are procured only from the verified suppliers, who have implemented and maintain certified quality management systems in their plants. With full certificates, such as RoHs, Reach, MSDS, FDA, LFGB, UL, EN549, BPA free, EN71, and so on;

For pre-production samples, we’ll provide several pieces to our clients for assembly and function testing. We will seal the samples in time once they’re approval. For Bulk Production, we’ll do the IPQCS & PQC (Multiple Sampling Inspection) during production and we’ll do the FQC (Sampling Inspection) after deburr or breaking sharp edges. In order to timely find problems, solve problems, reduce defective products, reduce manufacturing costs.

After packing and assembling, we’ll do the OQC (Sampling Inspection) to make sure the final goods are qualified.

 

And attach the injection molding CHINAMFG inspection report for reference:

Good reviews of customer

Packaging & Shipping

 

 

FAQ

Q1. How soon can I get a precise quotation for custom plastic injection part?
A1: Please send us your inquiry by email or Alibaba TM message. Once we confirm the design (Feature details with parameters), material, color, qty, we can provide quotation within 24 HOURS.

Q2: Can I get a free sample, how long will it take?
A2: a. For standard products we have in stock, YES for free sample, but the express fee will be charged in advance.

Mostly, it takes 3-10 days.
b. For custom products, sample fee is determined by the detailed sample requirements. Normally, it takes 7-15 days.

Q3: Can you make custom parts based on my sample?
A3: Yes, you can send the sample to us by express and we will evaluate the sample, scan the features and draft 3D drawing for production.

Q4: What does your OEM service include?
A4: We follow up your request from the design idea to the mass production.
a. You can provide 3D drawing to us, then our engineers and production teams evaluate the design and quote you the precise cost.
b. If you don’t have 3D drawing, you can provide 2D drawing or draft with features details with full dimensions, we can draft 3D drawing for you with fair charge.
c. You can also customize Logo on the product surface, package, color box or carton.
d. We also provide assembly service for the OEM parts.

Q5. What is your payment term?
A5: We accept T/T, Paypal, Western Union, L/C, Alibaba Trade Assurance.

Work with Neway, your business is in safe and your money is in safe!

If you can dream it, we can build it!
 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Plastic
Application: Medical, Household, Electronics, Automotive
Certification: TS16949, RoHS, ISO, Reach/ MSDS/LFGB/F D a
Sample Time: 3-7 Days
Prototype Process: SLA, Vacuum Forming, CNC, etc.
Molding Process: Injection Molding
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can injection molded parts be customized or modified to meet unique industrial needs?

Yes, injection molded parts can be customized or modified to meet unique industrial needs. The injection molding process offers flexibility and versatility, allowing for the production of highly customized parts with specific design requirements. Here’s a detailed explanation of how injection molded parts can be customized or modified:

Design Customization:

The design of an injection molded part can be tailored to meet unique industrial needs. Design customization involves modifying the part’s geometry, features, and dimensions to achieve specific functional requirements. This can include adding or removing features, changing wall thicknesses, incorporating undercuts or threads, and optimizing the part for assembly or integration with other components. Computer-aided design (CAD) tools and engineering expertise are used to create custom designs that address the specific industrial needs.

Material Selection:

The choice of material for injection molded parts can be customized based on the unique industrial requirements. Different materials possess distinct properties, such as strength, stiffness, chemical resistance, and thermal stability. By selecting the most suitable material, the performance and functionality of the part can be optimized for the specific application. Material customization ensures that the injection molded part can withstand the environmental conditions, operational stresses, and chemical exposures associated with the industrial application.

Surface Finishes:

The surface finish of injection molded parts can be customized to meet specific industrial needs. Surface finishes can range from smooth and polished to textured or patterned, depending on the desired aesthetic appeal, functional requirements, or ease of grip. Custom surface finishes can enhance the part’s appearance, provide additional protection against wear or corrosion, or enable specific interactions with other components or equipment.

Color and Appearance:

Injection molded parts can be customized in terms of color and appearance. Colorants can be added to the material during the molding process to achieve specific shades or color combinations. This customization option is particularly useful when branding, product differentiation, or visual identification is required. Additionally, surface textures, patterns, or special effects can be incorporated into the mold design to create unique appearances or visual effects.

Secondary Operations:

Injection molded parts can undergo secondary operations to further customize or modify them according to unique industrial needs. These secondary operations can include post-molding processes such as machining, drilling, tapping, welding, heat treating, or applying coatings. These operations enable the addition of specific features or functionalities that may not be achievable through the injection molding process alone. Secondary operations provide flexibility for customization and allow for the integration of injection molded parts into complex assemblies or systems.

Tooling Modifications:

If modifications or adjustments are required for an existing injection molded part, the tooling can be modified or reconfigured to accommodate the changes. Tooling modifications can involve altering the mold design, cavity inserts, gating systems, or cooling channels. This allows for the production of modified parts without the need for creating an entirely new mold. Tooling modifications provide cost-effective options for customizing or adapting injection molded parts to meet evolving industrial needs.

Prototyping and Iterative Development:

Injection molding enables the rapid prototyping and iterative development of parts. By using 3D printing or soft tooling, prototype molds can be created to produce small quantities of custom parts for testing, validation, and refinement. This iterative development process allows for modifications and improvements to be made based on real-world feedback, ensuring that the final injection molded parts meet the unique industrial needs effectively.

Overall, injection molded parts can be customized or modified to meet unique industrial needs through design customization, material selection, surface finishes, color and appearance options, secondary operations, tooling modifications, and iterative development. The flexibility and versatility of the injection molding process make it a valuable manufacturing method for creating highly customized parts that address specific industrial requirements.

How do injection molded parts enhance the overall efficiency and functionality of products and equipment?

Injection molded parts play a crucial role in enhancing the overall efficiency and functionality of products and equipment. They offer numerous advantages that make them a preferred choice in various industries. Here’s a detailed explanation of how injection molded parts contribute to improved efficiency and functionality:

1. Design Flexibility:

Injection molding allows for intricate and complex part designs that can be customized to meet specific requirements. The flexibility in design enables the integration of multiple features, such as undercuts, threads, hinges, and snap fits, into a single molded part. This versatility enhances the functionality of the product or equipment by enabling the creation of parts that are precisely tailored to their intended purpose.

2. High Precision and Reproducibility:

Injection molding offers excellent dimensional accuracy and repeatability, ensuring consistent part quality throughout production. The use of precision molds and advanced molding techniques allows for the production of parts with tight tolerances and intricate geometries. This high precision and reproducibility enhance the efficiency of products and equipment by ensuring proper fit, alignment, and functionality of the molded parts.

3. Cost-Effective Mass Production:

Injection molding is a highly efficient and cost-effective method for mass production. Once the molds are created, the injection molding process can rapidly produce a large number of identical parts in a short cycle time. The ability to produce parts in high volumes streamlines the manufacturing process, reduces labor costs, and ensures consistent part quality. This cost-effectiveness contributes to overall efficiency and enables the production of affordable products and equipment.

4. Material Selection:

Injection molding offers a wide range of material options, including engineering thermoplastics, elastomers, and even certain metal alloys. The ability to choose from various materials with different properties allows manufacturers to select the most suitable material for each specific application. The right material selection enhances the functionality of the product or equipment by providing the desired mechanical, thermal, and chemical properties required for optimal performance.

5. Structural Integrity and Durability:

Injection molded parts are known for their excellent structural integrity and durability. The molding process ensures uniform material distribution, resulting in parts with consistent strength and reliability. The elimination of weak points, such as seams or joints, enhances the overall structural integrity of the product or equipment. Additionally, injection molded parts are resistant to impact, wear, and environmental factors, ensuring long-lasting functionality in demanding applications.

6. Integration of Features:

Injection molding enables the integration of multiple features into a single part. This eliminates the need for assembly or additional components, simplifying the manufacturing process and reducing production time and costs. The integration of features such as hinges, fasteners, or mounting points enhances the overall efficiency and functionality of the product or equipment by providing convenient and streamlined solutions.

7. Lightweight Design:

Injection molded parts can be manufactured with lightweight materials without compromising strength or durability. This is particularly advantageous in industries where weight reduction is critical, such as automotive, aerospace, and consumer electronics. The use of lightweight injection molded parts improves energy efficiency, reduces material costs, and enhances the overall performance and efficiency of the products and equipment.

8. Consistent Surface Finish:

Injection molding produces parts with a consistent and high-quality surface finish. The use of polished or textured molds ensures that the molded parts have smooth, aesthetic surfaces without the need for additional finishing operations. This consistent surface finish enhances the overall functionality and visual appeal of the product or equipment, contributing to a positive user experience.

9. Customization and Branding:

Injection molding allows for customization and branding options, such as incorporating logos, labels, or surface textures, directly into the molded parts. This customization enhances the functionality and marketability of products and equipment by providing a unique identity and reinforcing brand recognition.

Overall, injection molded parts offer numerous advantages that enhance the efficiency and functionality of products and equipment. Their design flexibility, precision, cost-effectiveness, material selection, structural integrity, lightweight design, and customization capabilities make them a preferred choice for a wide range of applications across industries.

Are there different types of injection molded parts, such as automotive components or medical devices?

Yes, there are various types of injection molded parts that are specifically designed for different industries and applications. Injection molding is a versatile manufacturing process capable of producing complex and precise parts with high efficiency and repeatability. Here are some examples of different types of injection molded parts:

1. Automotive Components:

Injection molding plays a critical role in the automotive industry, where it is used to manufacture a wide range of components. Some common injection molded automotive parts include:

  • Interior components: Dashboard panels, door handles, trim pieces, instrument clusters, and center consoles.
  • Exterior components: Bumpers, grilles, body panels, mirror housings, and wheel covers.
  • Under-the-hood components: Engine covers, air intake manifolds, cooling system parts, and battery housings.
  • Electrical components: Connectors, switches, sensor housings, and wiring harnesses.
  • Seating components: Seat frames, headrests, armrests, and seatbelt components.

2. Medical Devices:

The medical industry relies on injection molding for the production of a wide range of medical devices and components. These parts often require high precision, biocompatibility, and sterilizability. Examples of injection molded medical devices include:

  • Syringes and injection pens
  • Implantable devices: Catheters, pacemaker components, orthopedic implants, and surgical instruments.
  • Diagnostic equipment: Test tubes, specimen containers, and laboratory consumables.
  • Disposable medical products: IV components, respiratory masks, blood collection tubes, and wound care products.

3. Consumer Products:

Injection molding is widely used in the production of consumer products due to its ability to mass-produce parts with high efficiency. Examples of injection molded consumer products include:

  • Household appliances: Television and audio equipment components, refrigerator parts, and vacuum cleaner components.
  • Electronics: Mobile phone cases, computer keyboard and mouse, camera components, and power adapters.
  • Toys and games: Action figures, building blocks, puzzles, and board game components.
  • Personal care products: Toothbrushes, razor handles, cosmetic containers, and hairdryer components.
  • Home improvement products: Light switch covers, door handles, power tool housings, and storage containers.

4. Packaging:

Injection molding is widely used in the packaging industry to produce a wide variety of plastic containers, caps, closures, and packaging components. Some examples include:

  • Bottles and containers for food, beverages, personal care products, and household chemicals.
  • Caps and closures for bottles and jars.
  • Thin-walled packaging for food products such as trays, cups, and lids.
  • Blister packs and clamshell packaging for retail products.
  • Packaging inserts and protective foam components.

5. Electronics and Electrical Components:

Injection molding is widely used in the electronics industry for the production of various components and enclosures. Examples include:

  • Connectors and housings for electrical and electronic devices.
  • Switches, buttons, and control panels.
  • PCB (Printed Circuit Board) components and enclosures.
  • LED (Light-Emitting Diode) components and light fixtures.
  • Power adapters and chargers.

These are just a few examples of the different types of injection molded parts. The versatility of injection molding allows for the production of parts in various industries, ranging from automotive and medical to consumer products, packaging, electronics, and more. The specific design requirements and performance characteristics of each part determine the choice of materials, tooling, and manufacturing processes for injection molding.

China manufacturer Custom Injection Molded Clear CHINAMFG Manufacturer Injection Molded Part  China manufacturer Custom Injection Molded Clear CHINAMFG Manufacturer Injection Molded Part
editor by CX 2024-02-20

China supplier Different Color Cutomized Plastic/Rubber Molded Part for Auto, Equipment

Product Description

Rubber bumper is vulcanized with various of material, such as EPDM, NR,SBR etc.
With Good resistance to seasonality, heat resistance, chlorination resistance, aging resistance.
Inside stainless steel and It has a very good damping effect.
Are widely applied in any area, such as furniture, Chassis instrument etc
 
Production Description

Item Name Rubber bumper, rubber feet
Material EPDM,NBR,NR,SBR,PVC,EPT, PP/ABS
Color Black, white, red,etc
Dimension As client’s requirement
Hardness 30~90ShA
Feature High elasticity, insulation, abrasion resistance, oil resistance, aging resistance, high temperature resistance, cold resistance, anti-corrosion, anti-static
Application Removable instruction,furniture,etc
OEM welcome
MOQ Meet your requirement
Certification REACH, ROHS,FDA,SGS,etc

 
The advantage and property of rubber bumper/feet from our factory
1. Built-in stainless steel sheet inside
 Make rubber bumper more stable and stronger inside stainless steel sheet .
2. We adopt heighten new technology craft
3. The material of rubber bumper is complete fresh and tasteless
4. Not fade, anti-slip wear-resistant anti – pressure , damping, acid and alkali resistant
5.  Environment friendly

The different material of rubber mounting will cause different property.
EPDM/NBR/silicone/SBR/PP/PVC etc.

Items EPDM NR silicone PVC
Hardness
(Sha)
30~85 30~90 20~85 50~95
Tensile strength
(Mpa)
≥8.5MPa > 20 Mpa 3~8 10~50
Elongation(%) 200~550 1000% 200~800 200~600
Specific Gravity 0.75-1.6 1.15-1.21 1.25~1.35 1.3~1.7
Temperature range -40~+120°C -50~70ºC. -55~+350°C -29°C – 65.5°C

1. the property of NR
 It has good wear resistance, high elasticity, breaking strength and elongation, But in the air, it is easy to get age, and it is get sticky when it get in touch with heat, which is easy to expand and dissolve in mineral oil or gasoline, but it is resistant to strong acid, but not to Alkali . working temperature is -50~70ºC.
2. the property of CHINAMFG
Weather ability, aging resistance, CHINAMFG resistance, chemical stability are excellent, and CFCS and a variety of refrigerants. Working temperature is -50~150
3. the property of silicone
It has excellent heat resistance, cold resistance, CHINAMFG resistance and atmospheric aging resistant.Good electrical insulation performance,The tensile strength and wear resistance are generally poor and has non- oil resistant. The working temperature is -55~250ºC
4. The property of NBR
Good oil resistance, heat resistance, abrasion resistance, solvent resistance and high – pressure oil,But it is not suitable for CHINAMFG solvents, such as ketones, ozone, nitro-hydrocarbons, and chloroform. The working temperature is -40~120 ºC
5. the property of CR
It has good elasticity, wear resistance and atmospheric aging resistance. It is not afraid of violent distortion and flammability.Chemical stability. The working temperature is -40~100 ºC
6. The property of FKM
Excellent high temperature resistance,And have excellent chemical resistance, most oil and solvent (other than ketones and esters).cold resistance is not good.
  About US
These years, We are working on various project of customers and long term working in rubber industry. We have faith in giving your professional advice on your particular project.
At present, our market have been expanded to more than 30 countries, and still growing.
First we will get drawing or sample from our client to check their design. If there is no drawing or sample, we will ask some question about product concept and design idea.
Then according to what application environment of rubber part, we will help design drawing and what raw material is best for rubber part. OEM parts are ok for us.
 
We can meet your requirement of the design and use for different shapes and material,
 And high/low temperature, foam/sponge or CHINAMFG rubber profile, fire resistance and special property of any rubber profile and molding rubber part
The advantage of our company
1.We have excellent complete production line with advanced production and test equipment
 Adding First-class technicians, so that we can  offer you the competitive price and high quality ,fast delivery time .
2.We have a special drawing design department to design the correct drawing data meeting your requirements. Then, we will use CAD or other format drawing to carry on tracking the production of tooling, sample ,mass goods. To avoid something wrong to each process. To make sure all of dimension are correct.
3.We also has special production supervision department. The engineer staff will Supervise  each process from the manufacture of tooling to the production of mass goods.
Reduce something wrong happened, finally offer you parts meeting your technology requirement.
4. All of Raw material are past quality certification,In the meantime, we will first delivery test report of rubber part when all of mass goods are finished. And make sure the quality meet your requirement, then make shipment.

  Packing and shipment

  • one part is packaged with 1 plastic bag, then certain quantity of mounting are put into carton box.
  • Carton box insider rubber mounting is with packing list detail. Such as, item name, the type number of rubber mounting, quantity of rubber mounting, gross weight,net weight, dimension of carton box,etc
  • All of carton box will be put on 1 non-fumigation pallet, then all carton boxes will be wrapped by film.
  • We have our own forwarder which has Rich experience in delivery arrangement to optimize the most economic and quickest shipping way, SEA,  AIR,  DHL, UPS ,FEDEX, TNT , etc.
  • Why choose us?
  • 1.Product: we specialize in rubber molding,injection and extruded rubber profile.
       And complete advanced production equipment and test equipment
    2.High quality:100% of the national standard has been no product quality complaints
    the materials are environmentally friendly and the technology reaches the international advanced level
    3.The competitive price:we have own factory, and the price is directly from factory. In additional,perfect advanced production equipment and enough staff. So the price is the best.
    4.Quantity :Small quantity is available
    5.Tooling:Developing tooling according to drawing or sample, and solve all of questions
    6.Package: all of package meet standard internal export package, carton outside, inside plastic bag for each part; as your requirement
    7.Transport:We have our own freight forwarder which can guarantee our goods can be delivered safely and promptly by sea or air
    8.Stock and delivery:Standard specification,lots of stocks, and fast delivery
    10. Service:Excellent service after-sales
     
  • Common Questions
  • What is the minimum order quantity for your rubber products?
  • Answer:We didn’t set the minimum order quantity,1~10pcs some client has ordered.
  • If we can get sample of rubber product from you?
  •  Answer:Of course, you can. Feel free to contact me about it if you need it.
  • Do we need to charge for customizing our own products? And if it is necessary to make tooling?
  • Answer: if we have the same or similar rubber part, at the same time, you satisfy it.
     Well, you don’t need to open tooling
    New rubber part, you will charge tooling according to the cost of tooling.
    In additional,if the cost of tooling is more than 1000 USD, we will return all of them to you in the future when purchasing order quantity reach certain quantity our company rule
  • How long you will get sample of rubber part?
  • Answer: Usually it is up to complexity degree of rubber part. Usually it take 7 to 10work days.
  • How many your company product rubber parts?
  •  Answer:It is up to the size of tooling and the quantity of cavity of tooling. If rubber part is more complicate and much bigger, well maybe just make few, but if rubber part is small and simple, the quantity is more than 200,000pcs.
  • Silicone part meet environment standard?
  • Answer:Our silicone part are all high grade 100% pure silicone material. We can offer you certification ROHS and SGS, FDA .Many of our products are exported to European and American countries. Such as: Straw, rubber diaphragm, food mechanical rubber, etc.
  • FAQ
    1. Are you factory or trade company?
    We  specialize in manufacturing rubber and plastic manufacturer, founded in 2004
    2. What’s the order process?
    A: Inquiry—provide us all clear requirements, such as drawing with detail technical data, or original sample
    B: Quotation—official quotation sheet with all detail specifications including price terms,shipment terms,etc
    C: Payment terms—100% prepaid the cost of tooling before making new sample
                    T/T 30% in advanced, and the balance according to the copy of the B/L
    D:Develop tooling—open the mould according to your requirement
    E:Sample confirmation—send you the sample for confirmation with test report from us
    F:Production—mass goods for order production
    G:Shipping— by sea, air or courier. Detailed picture of package will show you.
     
    3. What other terms of payment you use?
       PayPal, Western Union

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Agricultural, Industrial, Medical, Vehicle, Electronic, Household
Material: Plastic
Process Technology: Molding or Injection
The Name of Enterprise: Manufacturer
Certification: FDA, SGS, Reach, RoHS, etc
OEM: Welcome
Samples:
US$ 0.3/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you provide examples of products or equipment that incorporate injection molded parts?

Yes, there are numerous products and equipment across various industries that incorporate injection molded parts. Injection molding is a widely used manufacturing process that enables the production of complex and precise components. Here are some examples of products and equipment that commonly incorporate injection molded parts:

1. Electronics and Consumer Devices:

– Mobile phones and smartphones: These devices typically have injection molded plastic casings, buttons, and connectors.

– Computers and laptops: Injection molded parts are used for computer cases, keyboard keys, connectors, and peripheral device housings.

– Appliances: Products such as televisions, refrigerators, washing machines, and vacuum cleaners often incorporate injection molded components for their casings, handles, buttons, and control panels.

– Audio equipment: Speakers, headphones, and audio players often use injection molded parts for their enclosures and buttons.

2. Automotive Industry:

– Cars and Trucks: Injection molded parts are extensively used in the automotive industry. Examples include dashboard panels, door handles, interior trim, steering wheel components, air vents, and various under-the-hood components.

– Motorcycle and Bicycle Parts: Many motorcycle and bicycle components are manufactured using injection molding, including fairings, handle grips, footrests, instrument panels, and engine covers.

– Automotive Lighting: Headlights, taillights, turn signals, and other automotive lighting components often incorporate injection molded lenses, housings, and mounts.

3. Medical and Healthcare:

– Medical Devices: Injection molding is widely used in the production of medical devices such as syringes, IV components, surgical instruments, respiratory masks, implantable devices, and diagnostic equipment.

– Laboratory Equipment: Many laboratory consumables, such as test tubes, petri dishes, pipette tips, and specimen containers, are manufactured using injection molding.

– Dental Equipment: Dental tools, orthodontic devices, and dental prosthetics often incorporate injection molded components.

4. Packaging Industry:

– Bottles and Containers: Plastic bottles and containers used for food, beverages, personal care products, and household chemicals are commonly produced using injection molding.

– Caps and Closures: Injection molded caps and closures are widely used in the packaging industry for bottles, jars, and tubes.

– Thin-Walled Packaging: Injection molding is used to produce thin-walled packaging products such as trays, cups, and lids for food and other consumer goods.

5. Toys and Games:

– Many toys and games incorporate injection molded parts. Examples include action figures, building blocks, puzzles, board game components, and remote-controlled vehicles.

6. Industrial Equipment and Tools:

– Industrial machinery: Injection molded parts are used in various industrial equipment and machinery, including components for manufacturing machinery, conveyor systems, and robotic systems.

– Power tools: Many components of power tools, such as housing, handles, switches, and guards, are manufactured using injection molding.

– Hand tools: Injection molded parts are incorporated into a wide range of hand tools, including screwdrivers, wrenches, pliers, and cutting tools.

These are just a few examples of products and equipment that incorporate injection molded parts. The versatility of injection molding allows for its application in a wide range of industries, enabling the production of high-quality components with complex geometries and precise specifications.

Can you provide guidance on the selection of injection molded materials based on application requirements?

Yes, I can provide guidance on the selection of injection molded materials based on application requirements. The choice of material for injection molding plays a critical role in determining the performance, durability, and functionality of the molded parts. Here’s a detailed explanation of the factors to consider and the guidance for selecting the appropriate material:

1. Mechanical Properties:

Consider the mechanical properties required for the application, such as strength, stiffness, impact resistance, and wear resistance. Different materials have varying mechanical characteristics, and selecting a material with suitable properties is crucial. For example, engineering thermoplastics like ABS, PC, or nylon offer high strength and impact resistance, while materials like PEEK or ULTEM provide exceptional mechanical performance at elevated temperatures.

2. Chemical Resistance:

If the part will be exposed to chemicals, consider the chemical resistance of the material. Some materials, like PVC or PTFE, exhibit excellent resistance to a wide range of chemicals, while others may be susceptible to degradation or swelling. Ensure that the selected material can withstand the specific chemicals it will encounter in the application environment.

3. Thermal Properties:

Evaluate the operating temperature range of the application and choose a material with suitable thermal properties. Materials like PPS, PEEK, or LCP offer excellent heat resistance, while others may have limited temperature capabilities. Consider factors such as the maximum temperature, thermal stability, coefficient of thermal expansion, and heat transfer requirements of the part.

4. Electrical Properties:

For electrical or electronic applications, consider the electrical properties of the material. Materials like PBT or PPS offer good electrical insulation properties, while others may have conductive or dissipative characteristics. Determine the required dielectric strength, electrical conductivity, surface resistivity, and other relevant electrical properties for the application.

5. Environmental Conditions:

Assess the environmental conditions the part will be exposed to, such as humidity, UV exposure, outdoor weathering, or extreme temperatures. Some materials, like ASA or HDPE, have excellent weatherability and UV resistance, while others may degrade or become brittle under harsh conditions. Choose a material that can withstand the specific environmental factors to ensure long-term performance and durability.

6. Regulatory Compliance:

Consider any regulatory requirements or industry standards that the material must meet. Certain applications, such as those in the medical or food industries, may require materials that are FDA-approved or comply with specific certifications. Ensure that the selected material meets the necessary regulatory and safety standards for the intended application.

7. Cost Considerations:

Evaluate the cost implications associated with the material selection. Different materials have varying costs, and the material choice should align with the project budget. Consider not only the material cost per unit but also factors like tooling expenses, production efficiency, and the overall lifecycle cost of the part.

8. Material Availability and Processing:

Check the availability of the material and consider its processability in injection molding. Ensure that the material is readily available from suppliers and suitable for the specific injection molding process parameters, such as melt flow rate, moldability, and compatibility with the chosen molding equipment.

9. Material Testing and Validation:

Perform material testing and validation to ensure that the selected material meets the required specifications and performance criteria. Conduct mechanical, thermal, chemical, and electrical tests to verify the material’s properties and behavior under application-specific conditions.

Consider consulting with material suppliers, engineers, or experts in injection molding to get further guidance and recommendations based on the specific application requirements. They can provide valuable insights into material selection based on their expertise and knowledge of industry standards and best practices.

By carefully considering these factors and guidance, you can select the most appropriate material for injection molding that meets the specific application requirements, ensuring optimal performance, durability, and functionality of the molded parts.

Can you describe the range of materials that can be used for injection molding?

Injection molding offers a wide range of materials that can be used to produce parts with diverse properties and characteristics. The choice of material depends on the specific requirements of the application, including mechanical properties, chemical resistance, thermal stability, transparency, and cost. Here’s a description of the range of materials commonly used for injection molding:

1. Thermoplastics:

Thermoplastics are the most commonly used materials in injection molding due to their versatility, ease of processing, and recyclability. Some commonly used thermoplastics include:

  • Polypropylene (PP): PP is a lightweight and flexible thermoplastic with excellent chemical resistance and low cost. It is widely used in automotive parts, packaging, consumer products, and medical devices.
  • Polyethylene (PE): PE is a versatile thermoplastic with excellent impact strength and chemical resistance. It is used in various applications, including packaging, pipes, automotive components, and toys.
  • Polystyrene (PS): PS is a rigid and transparent thermoplastic with good dimensional stability. It is commonly used in packaging, consumer goods, and disposable products.
  • Polycarbonate (PC): PC is a transparent and impact-resistant thermoplastic with high heat resistance. It finds applications in automotive parts, electronic components, and optical lenses.
  • Acrylonitrile Butadiene Styrene (ABS): ABS is a versatile thermoplastic with a good balance of strength, impact resistance, and heat resistance. It is commonly used in automotive parts, electronic enclosures, and consumer products.
  • Polyvinyl Chloride (PVC): PVC is a durable and flame-resistant thermoplastic with good chemical resistance. It is used in a wide range of applications, including construction, electrical insulation, and medical tubing.
  • Polyethylene Terephthalate (PET): PET is a strong and lightweight thermoplastic with excellent clarity and barrier properties. It is commonly used in packaging, beverage bottles, and textile fibers.

2. Engineering Plastics:

Engineering plastics offer enhanced mechanical properties, heat resistance, and dimensional stability compared to commodity thermoplastics. Some commonly used engineering plastics in injection molding include:

  • Polyamide (PA/Nylon): Nylon is a strong and durable engineering plastic with excellent wear resistance and low friction properties. It is used in automotive components, electrical connectors, and industrial applications.
  • Polycarbonate (PC): PC, mentioned earlier, is also considered an engineering plastic due to its exceptional impact resistance and high-temperature performance.
  • Polyoxymethylene (POM/Acetal): POM is a high-strength engineering plastic with low friction and excellent dimensional stability. It finds applications in gears, bearings, and precision mechanical components.
  • Polyphenylene Sulfide (PPS): PPS is a high-performance engineering plastic with excellent chemical resistance and thermal stability. It is used in electrical and electronic components, automotive parts, and industrial applications.
  • Polyetheretherketone (PEEK): PEEK is a high-performance engineering plastic with exceptional heat resistance, chemical resistance, and mechanical properties. It is commonly used in aerospace, medical, and industrial applications.

3. Thermosetting Plastics:

Thermosetting plastics undergo a chemical crosslinking process during molding, resulting in a rigid and heat-resistant material. Some commonly used thermosetting plastics in injection molding include:

  • Epoxy: Epoxy resins offer excellent chemical resistance and mechanical properties. They are commonly used in electrical components, adhesives, and coatings.
  • Phenolic: Phenolic resins are known for their excellent heat resistance and electrical insulation properties. They find applications in electrical switches, automotive parts, and consumer goods.
  • Urea-formaldehyde (UF) and Melamine-formaldehyde (MF): UF and MF resins are used for molding electrical components, kitchenware, and decorative laminates.

4. Elastomers:

Elastomers, also known as rubber-like materials, are used to produce flexible and elastic parts. They provide excellent resilience, durability, and sealing properties. Some commonly used elastomers in injection molding include:

  • Thermoplastic Elastomers (TPE): TPEs are a class of materials that combine the characteristics of rubber and plastic. They offer flexibility, good compression set, and ease of processing. TPEs find applications in automotive components, consumer products, and medical devices.
  • Silicone: Silicone elastomers provide excellent heat resistance, electrical insulation, and biocompatibility. They are commonly used in medical devices, automotive seals, and household products.
  • Styrene Butadiene Rubber (SBR): SBR is a synthetic elastomer with good abrasion resistance and low-temperature flexibility. It is used in tires, gaskets, and conveyor belts.
  • Ethylene Propylene Diene Monomer (EPDM): EPDM is a durable elastomer with excellent weather resistance and chemical resistance. It finds applications in automotive seals, weatherstripping, and roofing membranes.

5. Composites:

Injection molding can also be used to produce parts made of composite materials, which combine two or more different types of materials to achieve specific properties. Commonly used composite materials in injection molding include:

  • Glass-Fiber Reinforced Plastics (GFRP): GFRP combines glass fibers with thermoplastics or thermosetting resins to enhance mechanical strength, stiffness, and dimensional stability. It is used in automotive components, electrical enclosures, and sporting goods.
  • Carbon-Fiber Reinforced Plastics (CFRP): CFRP combines carbon fibers with thermosetting resins to produce parts with exceptional strength, stiffness, and lightweight properties. It is commonly used in aerospace, automotive, and high-performance sports equipment.
  • Metal-Filled Plastics: Metal-filled plastics incorporate metal particles or fibers into thermoplastics to achieve properties such as conductivity, electromagnetic shielding, or enhanced weight and feel. They are used in electrical connectors, automotive components, and consumer electronics.

These are just a few examples of the materials used in injection molding. There are numerous other specialized materials available, each with its own unique properties, such as flame retardancy, low friction, chemical resistance, or specific certifications for medical or food-contact applications. The selection of the material depends on the desired performance, cost considerations, and regulatory requirements of the specific application.

China supplier Different Color Cutomized Plastic/Rubber Molded Part for Auto, Equipment  China supplier Different Color Cutomized Plastic/Rubber Molded Part for Auto, Equipment
editor by CX 2024-02-19

China Standard Molded Silicone Rubber Damper Buffer Custom Silicone Product Rubber Part for Auto Machinery

Product Description

Rubber bushing/rubber stopper/rubber shock absorber is vulcanized with various of material, such as EPDM, NR,SBR etc.
With Good resistance to seasonality, heat resistance, chlorination resistance, aging resistance.
Inside stainless steel and It has a very good damping effect.
Are widely applied in any area, such as furniture, Chassis instrument etc
 
Production Description

Item Name Rubber bushing, ruubber stopper, rubber shock absorber
Material EPDM,NBR,NR,SBR,PVC,EPT, PP/ABS
Color Black, white, red,etc
Dimension As client’s requirement
Hardness 30~90ShA
Feature High elasticity, insulation, abrasion resistance, oil resistance, aging resistance, high temperature resistance, cold resistance, anti-corrosion, anti-static
Application Removable instruction,furniture,etc
OEM welcome
MOQ Meet your requirement
Certification REACH, ROHS,FDA,SGS,etc

The advantage and property of rubber bushing/rubber stopper/rubber shock absorber
1. We adopt heighten new technology craft
2. The material of rubber bushing is complete fresh and tasteless
3. Not fade, anti-slip wear-resistant anti – pressure , damping, acid and alkali resistant
4.  Environment friendly


The different material of rubber bushing will cause different property.
EPDM/NBR/silicone/SBR/PP/PVC etc.

Items EPDM NR silicone PVC
Hardness
(Sha)
30~85 30~90 20~85 50~95
Tensile strength
(Mpa)
≥8.5MPa > 20 Mpa 3~8 10~50
Elongation(%) 200~550 1000% 200~800 200~600
Specific Gravity 0.75-1.6 1.15-1.21 1.25~1.35 1.3~1.7
Temperature range -40~+120°C -50~70ºC. -55~+350°C -29°C – 65.5°C

1. the property of NR
 It has good wear resistance, high elasticity, breaking strength and elongation, But in the air, it is easy to get age, and it is get sticky when it get in touch with heat, which is easy to expand and dissolve in mineral oil or gasoline, but it is resistant to strong acid, but not to Alkali . working temperature is -50~70ºC.
2. the property of EPDM
Weather ability, aging resistance, CHINAMFG resistance, chemical stability are excellent, and CFCS and a variety of refrigerants. Working temperature is -50~150
3. the property of silicone
It has excellent heat resistance, cold resistance, CHINAMFG resistance and atmospheric aging resistant.Good electrical insulation performance,The tensile strength and wear resistance are generally poor and has non- oil resistant. The working temperature is -55~250ºC
4. The property of NBR
Good oil resistance, heat resistance, abrasion resistance, solvent resistance and high – pressure oil,But it is not suitable for CHINAMFG solvents, such as ketones, ozone, nitro-hydrocarbons, and chloroform. The working temperature is -40~120 ºC
5. the property of CR
It has good elasticity, wear resistance and atmospheric aging resistance. It is not afraid of violent distortion and flammability.Chemical stability. The working temperature is -40~100 ºC
6. The property of FKM
Excellent high temperature resistance,And have excellent chemical resistance, most oil and solvent (other than ketones and esters).cold resistance is not good.
 

About US
These years, We are working on various project of customers and long term working in rubber industry. We have faith in giving your professional advice on your particular project.
At present, our market have been expanded to more than 30 countries, and still growing.
First we will get drawing or sample from our client to check their design. If there is no drawing or sample, we will ask some question about product concept and design idea.
Then according to what application environment of rubber part, we will help design drawing and what raw material is best for rubber part. OEM parts are ok for us.
 
We can meet your requirement of the design and use for different shapes and material,
 And high/low temperature, foam/sponge or CHINAMFG rubber profile, fire resistance and special property of any rubber profile and molding rubber part
The advantage of our company
1.We have excellent complete production line with advanced production and test equipment
 Adding First-class technicians, so that we can  offer you the competitive price and high quality ,fast delivery time .
2.We have a special drawing design department to design the correct drawing data meeting your requirements. Then, we will use CAD or other format drawing to carry on tracking the production of tooling, sample ,mass goods. To avoid something wrong to each process. To make sure all of dimension are correct.
3.We also has special production supervision department. The engineer staff will Supervise  each process from the manufacture of tooling to the production of mass goods.
Reduce something wrong happened, finally offer you parts meeting your technology requirement.
4. All of Raw material are past quality certification,In the meantime, we will first delivery test report of rubber part when all of mass goods are finished. And make sure the quality meet your requirement, then make shipment.

Packing and shipment

  • one part is packaged with 1 plastic bag, then certain quantity of mounting are put into carton box.
  • Carton box insider rubber mounting is with packing list detail. Such as, item name, the type number of rubber mounting, quantity of rubber mounting, gross weight,net weight, dimension of carton box,etc
  • All of carton box will be put on 1 non-fumigation pallet, then all carton boxes will be wrapped by film.
  • We have our own forwarder which has Rich experience in delivery arrangement to optimize the most economic and quickest shipping way, SEA,  AIR,  DHL, UPS ,FEDEX, TNT , etc.
  • Why choose us?
  • 1.Product: we specialize in rubber molding,injection and extruded rubber profile.
       And complete advanced production equipment and test equipment
    2.High quality:100% of the national standard has been no product quality complaints
    the materials are environmentally friendly and the technology reaches the international advanced level
    3.The competitive price:we have own factory, and the price is directly from factory. In additional,perfect advanced production equipment and enough staff. So the price is the best.
    4.Quantity :Small quantity is available
    5.Tooling:Developing tooling according to drawing or sample, and solve all of questions
    6.Package: all of package meet standard internal export package, carton outside, inside plastic bag for each part; as your requirement
    7.Transport:We have our own freight forwarder which can guarantee our goods can be delivered safely and promptly by sea or air
    8.Stock and delivery:Standard specification,lots of stocks, and fast delivery
    10. Service:Excellent service after-sales
     
  • Common Questions
  • What is the minimum order quantity for your rubber products?
  • Answer:We didn’t set the minimum order quantity,1~10pcs some client has ordered.
  • If we can get sample of rubber product from you?
  •  Answer:Of course, you can. Feel free to contact me about it if you need it.
  • Do we need to charge for customizing our own products? And if it is necessary to make tooling?
  • Answer: if we have the same or similar rubber part, at the same time, you satisfy it.
     Well, you don’t need to open tooling
    New rubber part, you will charge tooling according to the cost of tooling.
    In additional,if the cost of tooling is more than 1000 USD, we will return all of them to you in the future when purchasing order quantity reach certain quantity our company rule
  • How long you will get sample of rubber part?
  • Answer: Usually it is up to complexity degree of rubber part. Usually it take 7 to 10work days.
  • How many your company product rubber parts?
  •  Answer:It is up to the size of tooling and the quantity of cavity of tooling. If rubber part is more complicate and much bigger, well maybe just make few, but if rubber part is small and simple, the quantity is more than 200,000pcs.
  • Silicone part meet environment standard?
  • Answer:Our silicone part are all high grade 100% pure silicone material. We can offer you certification ROHS and SGS, FDA .Many of our products are exported to European and American countries. Such as: Straw, rubber diaphragm, food mechanical rubber, etc.
     
  • FAQ
    1. Are you factory or trade company?
    We  specialize in manufacturing rubber and plastic manufacturer, founded in 2004
    2. What’s the order process?
    A: Inquiry—provide us all clear requirements, such as drawing with detail technical data, or original sample
    B: Quotation—official quotation sheet with all detail specifications including price terms,shipment terms,etc
    C: Payment terms—100% prepaid the cost of tooling before making new sample
                    T/T 30% in advanced, and the balance according to the copy of the B/L
    D:Develop tooling—open the mould according to your requirement
    E:Sample confirmation—send you the sample for confirmation with test report from us
    F:Production—mass goods for order production
    G:Shipping— by sea, air or courier. Detailed picture of package will show you.
     
    3. What other terms of payment you use?
       PayPal, Western Union

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Agricultural, Industrial, Medical, Vehicle, Electronic, Household
Material: EPDM, Nr, NBR, Silicone, PVC, FKM, Eptetc
Process Technology: Molding or Injection
The Name of Enterprise: Manufacturer
Certification: FDA, SGS, Reach, RoHS, etc
OEM: Welcome
Samples:
US$ 0.3/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you explain the role of temperature and pressure in injection molding quality control?

Temperature and pressure are two critical parameters in injection molding that significantly impact the quality control of the process. Let’s explore their roles in more detail:

Temperature:

The temperature in injection molding plays several important roles in ensuring quality control:

1. Material Flow and Fill:

The temperature of the molten plastic material affects its viscosity, or flowability. Higher temperatures reduce the material’s viscosity, allowing it to flow more easily into the mold cavities during the injection phase. Proper temperature control ensures optimal material flow and fill, preventing issues such as short shots, flow marks, or incomplete part filling. Temperature control also helps ensure consistent material properties and dimensional accuracy in the final parts.

2. Melting and Homogenization:

The temperature must be carefully controlled during the melting process to ensure complete melting and homogenization of the plastic material. Insufficient melting can result in unmelted particles or inconsistent material properties, leading to defects in the molded parts. Proper temperature control during the melting phase ensures uniform melting and mixing of additives, enhancing material homogeneity and the overall quality of the molded parts.

3. Cooling and Solidification:

After the molten plastic is injected into the mold, temperature control is crucial during the cooling and solidification phase. Proper cooling rates and uniform cooling help prevent issues such as warping, shrinkage, or part distortion. Controlling the temperature allows for consistent solidification throughout the part, ensuring dimensional stability and minimizing internal stresses. Temperature control also affects the part’s crystallinity and microstructure, which can impact its mechanical properties.

Pressure:

Pressure control is equally important in achieving quality control in injection molding:

1. Material Packing:

During the packing phase of injection molding, pressure is applied to the molten plastic material to compensate for shrinkage as it cools and solidifies. Proper pressure control ensures that the material is adequately packed into the mold cavities, minimizing voids, sinks, or part deformation. Insufficient packing pressure can lead to incomplete filling and poor part quality, while excessive pressure can cause excessive stress, part distortion, or flash.

2. Gate and Flow Control:

The pressure in injection molding influences the flow behavior of the material through the mold. The pressure at the gate, where the molten plastic enters the mold cavity, needs to be carefully controlled. The gate pressure affects the material’s flow rate, filling pattern, and packing efficiency. Optimal gate pressure ensures uniform flow and fill, preventing issues like flow lines, weld lines, or air traps that can compromise part quality.

3. Ejection and Part Release:

Pressure control is essential during the ejection phase to facilitate the easy removal of the molded part from the mold. Adequate ejection pressure helps overcome any adhesion or friction between the part and the mold surfaces, ensuring smooth and damage-free part release. Improper ejection pressure can result in part sticking, part deformation, or mold damage.

4. Process Monitoring and Feedback:

Monitoring and controlling the temperature and pressure parameters in real-time are crucial for quality control. Advanced injection molding machines are equipped with sensors and control systems that continuously monitor temperature and pressure. These systems provide feedback and allow for adjustments during the process to maintain optimum conditions and ensure consistent part quality.

Overall, temperature and pressure control in injection molding are vital for achieving quality control. Proper temperature control ensures optimal material flow, melting, homogenization, cooling, and solidification, while pressure control ensures proper material packing, gate and flow control, ejection, and part release. Monitoring and controlling these parameters throughout the injection molding process contribute to the production of high-quality parts with consistent dimensions, mechanical properties, and surface finish.

What is the role of design software and CAD/CAM technology in optimizing injection molded parts?

Design software and CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing) technology play a crucial role in optimizing injection molded parts. They provide powerful tools and capabilities that enable designers and engineers to improve the efficiency, functionality, and quality of the parts. Here’s a detailed explanation of the role of design software and CAD/CAM technology in optimizing injection molded parts:

1. Design Visualization and Validation:

Design software and CAD tools allow designers to create 3D models of injection molded parts, providing a visual representation of the product before manufacturing. These tools enable designers to validate and optimize the part design by simulating its behavior under various conditions, such as stress analysis, fluid flow, or thermal performance. This visualization and validation process help identify potential issues or areas for improvement, leading to optimized part designs.

2. Design Optimization:

Design software and CAD/CAM technology provide powerful optimization tools that enable designers to refine and improve the performance of injection molded parts. These tools include features such as parametric modeling, shape optimization, and topology optimization. Parametric modeling allows for quick iteration and exploration of design variations, while shape and topology optimization algorithms help identify the most efficient and lightweight designs that meet the required functional and structural criteria.

3. Mold Design:

Design software and CAD/CAM technology are instrumental in the design of injection molds used to produce the molded parts. Mold design involves creating the 3D geometry of the mold components, such as the core, cavity, runner system, and cooling channels. CAD/CAM tools provide specialized features for mold design, including mold flow analysis, which simulates the injection molding process to optimize mold filling, cooling, and part ejection. This ensures the production of high-quality parts with minimal defects and cycle time.

4. Design for Manufacturability:

Design software and CAD/CAM technology facilitate the implementation of Design for Manufacturability (DFM) principles in the design process. DFM focuses on designing parts that are optimized for efficient and cost-effective manufacturing. CAD tools provide features that help identify and address potential manufacturing issues early in the design stage, such as draft angles, wall thickness variations, or parting line considerations. By considering manufacturing constraints during the design phase, injection molded parts can be optimized for improved manufacturability, reduced production costs, and shorter lead times.

5. Prototyping and Iterative Design:

Design software and CAD/CAM technology enable the rapid prototyping of injection molded parts through techniques such as 3D printing or CNC machining. This allows designers to physically test and evaluate the functionality, fit, and aesthetics of the parts before committing to mass production. CAD/CAM tools support iterative design processes by facilitating quick modifications and adjustments based on prototyping feedback, resulting in optimized part designs and reduced development cycles.

6. Collaboration and Communication:

Design software and CAD/CAM technology provide a platform for collaboration and communication among designers, engineers, and other stakeholders involved in the development of injection molded parts. These tools allow for easy sharing, reviewing, and commenting on designs, ensuring effective collaboration and streamlining the decision-making process. By facilitating clear communication and feedback exchange, design software and CAD/CAM technology contribute to optimized part designs and efficient development workflows.

7. Documentation and Manufacturing Instructions:

Design software and CAD/CAM technology assist in generating comprehensive documentation and manufacturing instructions for the production of injection molded parts. These tools enable the creation of detailed drawings, specifications, and assembly instructions that guide the manufacturing process. Accurate and well-documented designs help ensure consistency, quality, and repeatability in the production of injection molded parts.

Overall, design software and CAD/CAM technology are instrumental in optimizing injection molded parts. They enable designers and engineers to visualize, validate, optimize, and communicate designs, leading to improved part performance, manufacturability, and overall quality.

What are injection molded parts, and how are they manufactured?

Injection molded parts are components or products that are produced through the injection molding manufacturing process. Injection molding is a widely used manufacturing technique for creating plastic parts with high precision, complexity, and efficiency. Here’s a detailed explanation of injection molded parts and the process of manufacturing them:

Injection Molding Process:

The injection molding process involves the following steps:

1. Mold Design:

The first step in manufacturing injection molded parts is designing the mold. The mold is a custom-made tool that defines the shape and features of the final part. It is typically made from steel or aluminum and consists of two halves: the cavity and the core. The mold design takes into account factors such as part geometry, material selection, cooling requirements, and ejection mechanism.

2. Material Selection:

The next step is selecting the appropriate material for the injection molding process. Thermoplastic polymers are commonly used due to their ability to melt and solidify repeatedly without significant degradation. The material choice depends on the desired properties of the final part, such as strength, flexibility, transparency, or chemical resistance.

3. Melting and Injection:

In the injection molding machine, the selected thermoplastic material is melted and brought to a molten state. The molten material, called the melt, is then injected into the mold under high pressure. The injection is performed through a nozzle and a runner system that delivers the molten material to the mold cavity.

4. Cooling:

After the molten material is injected into the mold, it begins to cool and solidify. Cooling is a critical phase of the injection molding process as it determines the final part’s dimensional accuracy, strength, and other properties. The mold is designed with cooling channels or inserts to facilitate the efficient and uniform cooling of the part. Cooling time can vary depending on factors such as part thickness, material properties, and mold design.

5. Mold Opening and Ejection:

Once the injected material has sufficiently cooled and solidified, the mold opens, separating the two halves. Ejector pins or other mechanisms are used to push or release the part from the mold cavity. The ejection system must be carefully designed to avoid damaging the part during the ejection process.

6. Finishing:

After ejection, the injection molded part may undergo additional finishing processes, such as trimming excess material, removing sprues or runners, and applying surface treatments or textures. These processes help achieve the desired final appearance and functionality of the part.

Advantages of Injection Molded Parts:

Injection molded parts offer several advantages:

1. High Precision and Complexity:

Injection molding allows for the creation of parts with high precision and intricate details. The molds can produce complex shapes, fine features, and precise dimensions, enabling the manufacturing of parts with tight tolerances.

2. Cost-Effective Mass Production:

Injection molding is a highly efficient process suitable for large-scale production. Once the mold is created, the manufacturing process can be automated, resulting in fast and cost-effective production of identical parts. The high production volumes help reduce per-unit costs.

3. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, allowing for versatility in material selection based on the desired characteristics of the final part. Different materials can be used to achieve specific properties such as strength, flexibility, heat resistance, or chemical resistance.

4. Strength and Durability:

Injection molded parts can exhibit excellent strength and durability. The molding process ensures that the material is uniformly distributed, resulting in consistent mechanical properties throughout the part. This makes injection molded parts suitable for various applications that require structural integrity and longevity.

5. Minimal Post-Processing:

Injection molded parts often require minimal post-processing. The high precision and quality achieved during the molding process reduce the need for extensive additional machining or finishing operations, saving time and costs.

6. Design Flexibility:

With injection molding, designers have significant flexibility in part design. The process can accommodate complex geometries, undercuts, thin walls, and other design features that may be challenging or costly with other manufacturing methods. This flexibility allows for innovation and optimization of part functionality.

In summary, injection molded parts are components or products manufactured through the injection molding process. This process involves designing amold, selecting the appropriate material, melting and injecting the material into the mold, cooling and solidifying the part, opening the mold and ejecting the part, and applying finishing processes as necessary. Injection molded parts offer advantages such as high precision, complexity, cost-effective mass production, material versatility, strength and durability, minimal post-processing, and design flexibility. These factors contribute to the widespread use of injection molding in various industries for producing high-quality plastic parts.

China Standard Molded Silicone Rubber Damper Buffer Custom Silicone Product Rubber Part for Auto Machinery  China Standard Molded Silicone Rubber Damper Buffer Custom Silicone Product Rubber Part for Auto Machinery
editor by CX 2024-02-19

China Professional Industry Design Injection Molded CHINAMFG Injection Molding

Product Description

Company Introduction:
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 

We focus on plastic injection molding production since the year 2000
With 4,000 square meters dust-free workshop, and 15 sets of injection molding machine
from 8ton to 200ton, all of them equipped with manipulator,  Automatic and intelligent production is realized
They will be operated by our experienced technician, adjust temperature, pressure,
flow speed and mold, it is not easy, but we can handle these 15 warriors, so they can do
the best production
Stable raw material supply chain, PP, PC, ABS, LDPE, HDPE, PVC, TPR, PU, and so on. 
After mixing and adjusting by experienced experts, become the most precise formula
for your product
Intelligent machine, precisely formula, and mould, experienced technician, make all
the imagination of the product come true

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 

Material  PP, PS, ABS 
Color Any color available
Package Standard export carton 
Sample Time 5-7 working days
Logo Provide Pantone color code, logo design, size
Design AI, CAD, Core Draw,Original sample

Product View:
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
In addition to a small part of plastics containing 100% resin, the vast majority of plastics need to add other substances in addition to the main component resin

Filler
which can improve the strength and heat resistance of plastics and reduce the cost. For example, the addition of wood powder to phenolic resin can greatly reduce the cost, make phenolic plastic 1 of the cheapest plastics, and significantly improve the mechanical strength. Fillers can be divided into organic fillers and inorganic fillers, the former such as wood powder, rags, paper and various fabric fibers, and the latter such as glass fiber, diatomite, asbestos, carbon black, etc.

Plasticizer
Plasticizers can increase the plasticity and softness of plastics, reduce brittleness, and make plastics easy to process and shape. Plasticizers are generally high boiling organic compounds that are miscible with resin, non-toxic, odorless and stable to light and heat. Phthalates are the most commonly used. For example, in the production of PVC plastics, if more plasticizers are added, soft PVC plastics can be obtained. If no or less plasticizers are added (dosage < 10%), rigid PVC plastics can be obtained.

Stabilizer
In order to prevent the synthetic resin from being decomposed and damaged by light and heat in the process of processing and use, and prolong the service life, a stabilizer should be added to the plastic. Commonly used are stearate, epoxy resin, etc.

Colorant
Colorants can make plastics have various bright and beautiful colors. Organic dyes and inorganic pigments are commonly used as colorants.

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: ABS, PP, PE, PVC, PC, PA, etc.
Application: Medical, Household, Electronics, Automotive, Agricultural
Certification: TS16949, ISO
Color: Customized
Transport Package: Customized
Specification: Custom According to Drawing or Samples
Customization:
Available

|

What factors influence the design and tooling of injection molded parts for specific applications?

Several factors play a crucial role in influencing the design and tooling of injection molded parts for specific applications. The following are key factors that need to be considered:

1. Functionality and Performance Requirements:

The intended functionality and performance requirements of the part heavily influence its design and tooling. Factors such as strength, durability, dimensional accuracy, chemical resistance, and temperature resistance are essential considerations. The part’s design must be optimized to meet these requirements while ensuring proper functionality and performance in its intended application.

2. Material Selection:

The choice of material for injection molding depends on the specific application and its requirements. Different materials have varying properties, such as strength, flexibility, heat resistance, chemical resistance, and electrical conductivity. The material selection influences the design and tooling considerations, as the part’s geometry and structure must be compatible with the selected material’s properties.

3. Part Complexity and Geometry:

The complexity and geometry of the part significantly impact its design and tooling. Complex parts with intricate features, undercuts, thin walls, or varying thicknesses may require specialized tooling and mold designs. The part’s geometry must be carefully considered to ensure proper mold filling, cooling, ejection, and dimensional stability during the injection molding process.

4. Manufacturing Cost and Efficiency:

The design and tooling of injection molded parts are also influenced by manufacturing cost and efficiency considerations. Design features that reduce material usage, minimize cycle time, and optimize the use of the injection molding machine can help lower production costs. Efficient tooling designs, such as multi-cavity molds or family molds, can increase productivity and reduce per-part costs.

5. Moldability and Mold Design:

The moldability of the part, including factors like draft angles, wall thickness, and gate location, affects the mold design. The part should be designed to facilitate proper flow of molten plastic during injection, ensure uniform cooling, and allow for easy part ejection. The tooling design, such as the number of cavities, gate design, and cooling system, is influenced by the part’s moldability requirements.

6. Regulatory and Industry Standards:

Specific applications, especially in industries like automotive, aerospace, and medical, may have regulatory and industry standards that influence the design and tooling considerations. Compliance with these standards regarding materials, dimensions, safety, and performance requirements is essential and may impact the design choices and tooling specifications.

7. Assembly and Integration:

If the injection molded part needs to be assembled or integrated with other components or systems, the design and tooling must consider the assembly process and requirements. Features such as snap fits, interlocking mechanisms, or specific mating surfacescan be incorporated into the part’s design to facilitate efficient assembly and integration.

8. Aesthetics and Branding:

In consumer products and certain industries, the aesthetic appearance and branding of the part may be crucial. Design considerations such as surface finish, texture, color, and the inclusion of logos or branding elements may be important factors that influence the design and tooling decisions.

Overall, the design and tooling of injection molded parts for specific applications are influenced by a combination of functional requirements, material considerations, part complexity, manufacturing cost and efficiency, moldability, regulatory standards, assembly requirements, and aesthetic factors. It is essential to carefully consider these factors to achieve optimal part design and successful injection molding production.

Are there specific considerations for choosing injection molded parts in applications with varying environmental conditions or industry standards?

Yes, there are specific considerations to keep in mind when choosing injection molded parts for applications with varying environmental conditions or industry standards. These factors play a crucial role in ensuring that the selected parts can withstand the specific operating conditions and meet the required standards. Here’s a detailed explanation of the considerations for choosing injection molded parts in such applications:

1. Material Selection:

The choice of material for injection molded parts is crucial when considering varying environmental conditions or industry standards. Different materials offer varying levels of resistance to factors such as temperature extremes, UV exposure, chemicals, moisture, or mechanical stress. Understanding the specific environmental conditions and industry requirements is essential in selecting a material that can withstand these conditions while meeting the necessary standards for performance, durability, and safety.

2. Temperature Resistance:

In applications with extreme temperature variations, it is important to choose injection molded parts that can withstand the specific temperature range. Some materials, such as engineering thermoplastics, exhibit excellent high-temperature resistance, while others may be more suitable for low-temperature environments. Consideration should also be given to the potential for thermal expansion or contraction, as it can affect the dimensional stability and overall performance of the parts.

3. Chemical Resistance:

In industries where exposure to chemicals is common, it is critical to select injection molded parts that can resist chemical attack and degradation. Different materials have varying levels of chemical resistance, and it is important to choose a material that is compatible with the specific chemicals present in the application environment. Consideration should also be given to factors such as prolonged exposure, concentration, and frequency of contact with chemicals.

4. UV Stability:

For applications exposed to outdoor environments or intense UV radiation, selecting injection molded parts with UV stability is essential. UV radiation can cause material degradation, discoloration, or loss of mechanical properties over time. Materials with UV stabilizers or additives can provide enhanced resistance to UV radiation, ensuring the longevity and performance of the parts in outdoor or UV-exposed applications.

5. Mechanical Strength and Impact Resistance:

In applications where mechanical stress or impact resistance is critical, choosing injection molded parts with the appropriate mechanical properties is important. Materials with high tensile strength, impact resistance, or toughness can ensure that the parts can withstand the required loads, vibrations, or impacts without failure. Consideration should also be given to factors such as fatigue resistance, abrasion resistance, or flexibility, depending on the specific application requirements.

6. Compliance with Industry Standards:

When selecting injection molded parts for applications governed by industry standards or regulations, it is essential to ensure that the chosen parts comply with the required standards. This includes standards for dimensions, tolerances, safety, flammability, electrical properties, or specific performance criteria. Choosing parts that are certified or tested to meet the relevant industry standards helps ensure compliance and reliability in the intended application.

7. Environmental Considerations:

In today’s environmentally conscious landscape, considering the sustainability and environmental impact of injection molded parts is increasingly important. Choosing materials that are recyclable or biodegradable can align with sustainability goals. Additionally, evaluating factors such as energy consumption during manufacturing, waste reduction, or the use of environmentally friendly manufacturing processes can contribute to environmentally responsible choices.

8. Customization and Design Flexibility:

Lastly, the design flexibility and customization options offered by injection molded parts can be advantageous in meeting specific environmental or industry requirements. Injection molding allows for intricate designs, complex geometries, and the incorporation of features such as gaskets, seals, or mounting points. Customization options for color, texture, or surface finish can also be considered to meet specific branding or aesthetic requirements.

Considering these specific considerations when choosing injection molded parts for applications with varying environmental conditions or industry standards ensures that the selected parts are well-suited for their intended use, providing optimal performance, durability, and compliance with the required standards.

Can you describe the range of materials that can be used for injection molding?

Injection molding offers a wide range of materials that can be used to produce parts with diverse properties and characteristics. The choice of material depends on the specific requirements of the application, including mechanical properties, chemical resistance, thermal stability, transparency, and cost. Here’s a description of the range of materials commonly used for injection molding:

1. Thermoplastics:

Thermoplastics are the most commonly used materials in injection molding due to their versatility, ease of processing, and recyclability. Some commonly used thermoplastics include:

  • Polypropylene (PP): PP is a lightweight and flexible thermoplastic with excellent chemical resistance and low cost. It is widely used in automotive parts, packaging, consumer products, and medical devices.
  • Polyethylene (PE): PE is a versatile thermoplastic with excellent impact strength and chemical resistance. It is used in various applications, including packaging, pipes, automotive components, and toys.
  • Polystyrene (PS): PS is a rigid and transparent thermoplastic with good dimensional stability. It is commonly used in packaging, consumer goods, and disposable products.
  • Polycarbonate (PC): PC is a transparent and impact-resistant thermoplastic with high heat resistance. It finds applications in automotive parts, electronic components, and optical lenses.
  • Acrylonitrile Butadiene Styrene (ABS): ABS is a versatile thermoplastic with a good balance of strength, impact resistance, and heat resistance. It is commonly used in automotive parts, electronic enclosures, and consumer products.
  • Polyvinyl Chloride (PVC): PVC is a durable and flame-resistant thermoplastic with good chemical resistance. It is used in a wide range of applications, including construction, electrical insulation, and medical tubing.
  • Polyethylene Terephthalate (PET): PET is a strong and lightweight thermoplastic with excellent clarity and barrier properties. It is commonly used in packaging, beverage bottles, and textile fibers.

2. Engineering Plastics:

Engineering plastics offer enhanced mechanical properties, heat resistance, and dimensional stability compared to commodity thermoplastics. Some commonly used engineering plastics in injection molding include:

  • Polyamide (PA/Nylon): Nylon is a strong and durable engineering plastic with excellent wear resistance and low friction properties. It is used in automotive components, electrical connectors, and industrial applications.
  • Polycarbonate (PC): PC, mentioned earlier, is also considered an engineering plastic due to its exceptional impact resistance and high-temperature performance.
  • Polyoxymethylene (POM/Acetal): POM is a high-strength engineering plastic with low friction and excellent dimensional stability. It finds applications in gears, bearings, and precision mechanical components.
  • Polyphenylene Sulfide (PPS): PPS is a high-performance engineering plastic with excellent chemical resistance and thermal stability. It is used in electrical and electronic components, automotive parts, and industrial applications.
  • Polyetheretherketone (PEEK): PEEK is a high-performance engineering plastic with exceptional heat resistance, chemical resistance, and mechanical properties. It is commonly used in aerospace, medical, and industrial applications.

3. Thermosetting Plastics:

Thermosetting plastics undergo a chemical crosslinking process during molding, resulting in a rigid and heat-resistant material. Some commonly used thermosetting plastics in injection molding include:

  • Epoxy: Epoxy resins offer excellent chemical resistance and mechanical properties. They are commonly used in electrical components, adhesives, and coatings.
  • Phenolic: Phenolic resins are known for their excellent heat resistance and electrical insulation properties. They find applications in electrical switches, automotive parts, and consumer goods.
  • Urea-formaldehyde (UF) and Melamine-formaldehyde (MF): UF and MF resins are used for molding electrical components, kitchenware, and decorative laminates.

4. Elastomers:

Elastomers, also known as rubber-like materials, are used to produce flexible and elastic parts. They provide excellent resilience, durability, and sealing properties. Some commonly used elastomers in injection molding include:

  • Thermoplastic Elastomers (TPE): TPEs are a class of materials that combine the characteristics of rubber and plastic. They offer flexibility, good compression set, and ease of processing. TPEs find applications in automotive components, consumer products, and medical devices.
  • Silicone: Silicone elastomers provide excellent heat resistance, electrical insulation, and biocompatibility. They are commonly used in medical devices, automotive seals, and household products.
  • Styrene Butadiene Rubber (SBR): SBR is a synthetic elastomer with good abrasion resistance and low-temperature flexibility. It is used in tires, gaskets, and conveyor belts.
  • Ethylene Propylene Diene Monomer (EPDM): EPDM is a durable elastomer with excellent weather resistance and chemical resistance. It finds applications in automotive seals, weatherstripping, and roofing membranes.

5. Composites:

Injection molding can also be used to produce parts made of composite materials, which combine two or more different types of materials to achieve specific properties. Commonly used composite materials in injection molding include:

  • Glass-Fiber Reinforced Plastics (GFRP): GFRP combines glass fibers with thermoplastics or thermosetting resins to enhance mechanical strength, stiffness, and dimensional stability. It is used in automotive components, electrical enclosures, and sporting goods.
  • Carbon-Fiber Reinforced Plastics (CFRP): CFRP combines carbon fibers with thermosetting resins to produce parts with exceptional strength, stiffness, and lightweight properties. It is commonly used in aerospace, automotive, and high-performance sports equipment.
  • Metal-Filled Plastics: Metal-filled plastics incorporate metal particles or fibers into thermoplastics to achieve properties such as conductivity, electromagnetic shielding, or enhanced weight and feel. They are used in electrical connectors, automotive components, and consumer electronics.

These are just a few examples of the materials used in injection molding. There are numerous other specialized materials available, each with its own unique properties, such as flame retardancy, low friction, chemical resistance, or specific certifications for medical or food-contact applications. The selection of the material depends on the desired performance, cost considerations, and regulatory requirements of the specific application.

China Professional Industry Design Injection Molded CHINAMFG Injection Molding  China Professional Industry Design Injection Molded CHINAMFG Injection Molding
editor by CX 2024-02-18

China high quality OEM/ODM Customized Rapid Prototype Mould Manufacturer ABS CHINAMFG Injection Molding for Small Molded Parts

Product Description

 

Product Description

PLASTIC INJECTION MOLDING
 

Item

OEM/ODM customized rapid prototype mould manufacturer abs CHINAMFG injection molding for small molded parts

Material

ABS, PC/ABS, PP, PC, POM(Delrin), Nylon 6, Nylon 6/6, PA 12, HDPE, LDPE, PS(HIPS), Acrylic, SAN/AS, ASA, PVC, UPVC, TPE, TPR, PU, TPU, PET, PEI(Ultem), PSU, PPSU, PPE/PS, PTFE, GPPS, PPO, PES, CA, etc.

Certificate

IATF 16949:2016 / ISO 9001:2015 / ISO 45001:2018 / ISO 14001:2015 /REACH/ROHS/MSDS/LFGB

Drawing Format

.stp / .step / .igs /.CHINAMFG /.dwg / .pdf

Parameters

Inch, centimeter, millimeter, etc.

Surface Treatment

Matte, Common polishing, Mirror polishing, Texture, Plating, Power Coating (Painting), Laser Engraving, Brushing, Marbling, Printing etc.

Mold Material

S136H, 718H, NAK80, P20, H13, etc.

Mold Life-cycle

100,000-500,000 shots.

Many kinds of raw material are frequently used, such as ABS, PC/ABS, PP, PC, POM, Nylon (PA6, PA66, PA12), PE, PS, Acrylic, SAN/AS, ASA, PET, PVC, TPE, TPR, TPU, TPV. We can produce plastic products in some special materials, such as PBT, PEI (Ultem), PEEK, PSU, PPSU, PPE, PPE/PS, PTFE , GPPS, PPO, PES, PPA, CA, DMC, PF, etc.
We can also add some additives according to the functional requirements of the project to improve the performance of the product, such as Reinforcing Agents, Flame Retardants, Fillers, Functional additives, Elastomer toughening agents, Weathering agents, Reflective agents, etc…

There are some CHINAMFG for reference:

Company Profile

Plastic injection molding is the preferred process for manufacturing plastic parts, as it is ideal for producing high volumes of low-cost CHINAMFG with high tolerance precision, repeatability and little to no finishing required.

We have 18 sets injection molding machines, includes the multi-color injection molding machines, the biggest 1 is 1250T . Our capability for Plastic part is up to 1500mm.

Supply Ability

Workflow after Customer Order is Placed

Mould Design Process

Step 1 : Analyze the product drawings
Step 2 :Create the Design for Manufacturability (DFM) report
Step 3 : Make the mould flow analysis
Step 4 : Design tooling drawings
Step 5 : Mould making

Once the mould making is finished, we’ll make several pieces of pre-production samples for test, if the dimensions are correct, then we will send the samples to customers for final confirmation. If the test failed, we will modify the mould or adjust the molding parameter to make new samples, and test it again. Once the samples are approval by customers, we will purchase the raw material and making quality inspection. Then mixing material, molding and trimming, we will make many times of inspection during the production. Finally we will arrange the assembly and packing. After whole order is ready, we will send the packing list to customer to arrange the shipment.

We can also provide double-color and triple-color injection molding
 

Double-color injection molding and triple-color injection molding process can make the appearance of the product more beautiful, and easy to change the color without painting, but the cost is expensive and the technical requirements are high.

Related products:

And we have10,000 level dust-free production workshop for biomedical products.

Neway Highly Welcome Your Own Custom Designs !!!

 

Why choose us

We seriously take care of the quality control from IQC to OQC, throughout each step of the production.

Let us show you our quality control:

For raw materials, we’ll do the IQC in time. All materials are procured only from the verified suppliers, who have implemented and maintain certified quality management systems in their plants. With full certificates, such as RoHs, Reach, MSDS, FDA, LFGB, UL, EN549, BPA free, EN71, and so on;

For pre-production samples, we’ll provide several pieces to our clients for assembly and function testing. We will seal the samples in time once they’re approval. For Bulk Production, we’ll do the IPQCS & PQC (Multiple Sampling Inspection) during production and we’ll do the FQC (Sampling Inspection) after deburr or breaking sharp edges. In order to timely find problems, solve problems, reduce defective products, reduce manufacturing costs.

After packing and assembling, we’ll do the OQC (Sampling Inspection) to make sure the final goods are qualified.

 

And attach the injection molding CHINAMFG inspection report for reference:

Good reviews of customer

Packaging & Shipping

 

 

FAQ

Q1. How soon can I get a precise quotation for custom plastic injection part?
A1: Please send us your inquiry by email or Alibaba TM message. Once we confirm the design (Feature details with parameters), material, color, qty, we can provide quotation within 24 HOURS.

Q2: Can I get a free sample, how long will it take?
A2: a. For standard products we have in stock, YES for free sample, but the express fee will be charged in advance.

Mostly, it takes 3-10 days.
b. For custom products, sample fee is determined by the detailed sample requirements. Normally, it takes 7-15 days.

Q3: Can you make custom parts based on my sample?
A3: Yes, you can send the sample to us by express and we will evaluate the sample, scan the features and draft 3D drawing for production.

Q4: What does your OEM service include?
A4: We follow up your request from the design idea to the mass production.
a. You can provide 3D drawing to us, then our engineers and production teams evaluate the design and quote you the precise cost.
b. If you don’t have 3D drawing, you can provide 2D drawing or draft with features details with full dimensions, we can draft 3D drawing for you with fair charge.
c. You can also customize Logo on the product surface, package, color box or carton.
d. We also provide assembly service for the OEM parts.

Q5. What is your payment term?
A5: We accept T/T, Paypal, Western Union, L/C, Alibaba Trade Assurance.

Work with Neway, your business is in safe and your money is in safe!

If you can dream it, we can build it!
 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Plastic
Application: Medical, Household, Electronics, Automotive
Certification: TS16949, RoHS, ISO, Reach/ MSDS/LFGB/F D a
Sample Time: 3-7 Days
Prototype Process: SLA, Vacuum Forming, CNC, etc.
Molding Process: Injection Molding
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you explain the role of temperature and pressure in injection molding quality control?

Temperature and pressure are two critical parameters in injection molding that significantly impact the quality control of the process. Let’s explore their roles in more detail:

Temperature:

The temperature in injection molding plays several important roles in ensuring quality control:

1. Material Flow and Fill:

The temperature of the molten plastic material affects its viscosity, or flowability. Higher temperatures reduce the material’s viscosity, allowing it to flow more easily into the mold cavities during the injection phase. Proper temperature control ensures optimal material flow and fill, preventing issues such as short shots, flow marks, or incomplete part filling. Temperature control also helps ensure consistent material properties and dimensional accuracy in the final parts.

2. Melting and Homogenization:

The temperature must be carefully controlled during the melting process to ensure complete melting and homogenization of the plastic material. Insufficient melting can result in unmelted particles or inconsistent material properties, leading to defects in the molded parts. Proper temperature control during the melting phase ensures uniform melting and mixing of additives, enhancing material homogeneity and the overall quality of the molded parts.

3. Cooling and Solidification:

After the molten plastic is injected into the mold, temperature control is crucial during the cooling and solidification phase. Proper cooling rates and uniform cooling help prevent issues such as warping, shrinkage, or part distortion. Controlling the temperature allows for consistent solidification throughout the part, ensuring dimensional stability and minimizing internal stresses. Temperature control also affects the part’s crystallinity and microstructure, which can impact its mechanical properties.

Pressure:

Pressure control is equally important in achieving quality control in injection molding:

1. Material Packing:

During the packing phase of injection molding, pressure is applied to the molten plastic material to compensate for shrinkage as it cools and solidifies. Proper pressure control ensures that the material is adequately packed into the mold cavities, minimizing voids, sinks, or part deformation. Insufficient packing pressure can lead to incomplete filling and poor part quality, while excessive pressure can cause excessive stress, part distortion, or flash.

2. Gate and Flow Control:

The pressure in injection molding influences the flow behavior of the material through the mold. The pressure at the gate, where the molten plastic enters the mold cavity, needs to be carefully controlled. The gate pressure affects the material’s flow rate, filling pattern, and packing efficiency. Optimal gate pressure ensures uniform flow and fill, preventing issues like flow lines, weld lines, or air traps that can compromise part quality.

3. Ejection and Part Release:

Pressure control is essential during the ejection phase to facilitate the easy removal of the molded part from the mold. Adequate ejection pressure helps overcome any adhesion or friction between the part and the mold surfaces, ensuring smooth and damage-free part release. Improper ejection pressure can result in part sticking, part deformation, or mold damage.

4. Process Monitoring and Feedback:

Monitoring and controlling the temperature and pressure parameters in real-time are crucial for quality control. Advanced injection molding machines are equipped with sensors and control systems that continuously monitor temperature and pressure. These systems provide feedback and allow for adjustments during the process to maintain optimum conditions and ensure consistent part quality.

Overall, temperature and pressure control in injection molding are vital for achieving quality control. Proper temperature control ensures optimal material flow, melting, homogenization, cooling, and solidification, while pressure control ensures proper material packing, gate and flow control, ejection, and part release. Monitoring and controlling these parameters throughout the injection molding process contribute to the production of high-quality parts with consistent dimensions, mechanical properties, and surface finish.

What eco-friendly or sustainable practices are associated with injection molding processes and materials?

Eco-friendly and sustainable practices are increasingly important in the field of injection molding. Many advancements have been made to minimize the environmental impact of both the processes and materials used in injection molding. Here’s a detailed explanation of the eco-friendly and sustainable practices associated with injection molding processes and materials:

1. Material Selection:

The choice of materials can significantly impact the environmental footprint of injection molding. Selecting eco-friendly materials is a crucial practice. Some sustainable material options include biodegradable or compostable polymers, such as PLA or PHA, which can reduce the environmental impact of the end product. Additionally, using recycled or bio-based materials instead of virgin plastics can help to conserve resources and reduce waste.

2. Recycling:

Implementing recycling practices is an essential aspect of sustainable injection molding. Recycling involves collecting, processing, and reusing plastic waste generated during the injection molding process. Both post-industrial and post-consumer plastic waste can be recycled and incorporated into new products, reducing the demand for virgin materials and minimizing landfill waste.

3. Energy Efficiency:

Efficient energy usage is a key factor in sustainable injection molding. Optimizing the energy consumption of machines, heating and cooling systems, and auxiliary equipment can significantly reduce the carbon footprint of the manufacturing process. Employing energy-efficient technologies, such as servo-driven machines or advanced heating and cooling systems, can help achieve energy savings and lower environmental impact.

4. Process Optimization:

Process optimization is another sustainable practice in injection molding. By fine-tuning process parameters, optimizing cycle times, and reducing material waste, manufacturers can minimize resource consumption and improve overall process efficiency. Advanced process control systems, real-time monitoring, and automation technologies can assist in achieving these optimization goals.

5. Waste Reduction:

Efforts to reduce waste are integral to sustainable injection molding practices. Minimizing material waste through improved design, better material handling techniques, and efficient mold design can positively impact the environment. Furthermore, implementing lean manufacturing principles and adopting waste management strategies, such as regrinding scrap materials or reusing purging compounds, can contribute to waste reduction and resource conservation.

6. Clean Production:

Adopting clean production practices helps mitigate the environmental impact of injection molding. This includes reducing emissions, controlling air and water pollution, and implementing effective waste management systems. Employing pollution control technologies, such as filters and treatment systems, can help ensure that the manufacturing process operates in an environmentally responsible manner.

7. Life Cycle Assessment:

Conducting a life cycle assessment (LCA) of the injection molded products can provide insights into their overall environmental impact. LCA evaluates the environmental impact of a product throughout its entire life cycle, from raw material extraction to disposal. By considering factors such as material sourcing, production, use, and end-of-life options, manufacturers can identify areas for improvement and make informed decisions to reduce the environmental footprint of their products.

8. Collaboration and Certification:

Collaboration among stakeholders, including manufacturers, suppliers, and customers, is crucial for fostering sustainable practices in injection molding. Sharing knowledge, best practices, and sustainability initiatives can drive eco-friendly innovations. Additionally, obtaining certifications such as ISO 14001 (Environmental Management System) or partnering with organizations that promote sustainable manufacturing can demonstrate a commitment to environmental responsibility and sustainability.

9. Product Design for Sustainability:

Designing products with sustainability in mind is an important aspect of eco-friendly injection molding practices. By considering factors such as material selection, recyclability, energy efficiency, and end-of-life options during the design phase, manufacturers can create products that are environmentally responsible and promote a circular economy.

Implementing these eco-friendly and sustainable practices in injection molding processes and materials can help reduce the environmental impact of manufacturing, conserve resources, minimize waste, and contribute to a more sustainable future.

Can you explain the advantages of using injection molding for producing parts?

Injection molding offers several advantages as a manufacturing process for producing parts. It is a widely used technique for creating plastic components with high precision, efficiency, and scalability. Here’s a detailed explanation of the advantages of using injection molding:

1. High Precision and Complexity:

Injection molding allows for the production of parts with high precision and intricate details. The molds used in injection molding are capable of creating complex shapes, fine features, and precise dimensions. This level of precision enables the manufacturing of parts with tight tolerances, ensuring consistent quality and fit.

2. Cost-Effective Mass Production:

Injection molding is a highly efficient process suitable for large-scale production. Once the initial setup, including mold design and fabrication, is completed, the manufacturing process can be automated. Injection molding machines can produce parts rapidly and continuously, resulting in fast and cost-effective production of identical parts. The ability to produce parts in high volumes helps reduce per-unit costs, making injection molding economically advantageous for mass production.

3. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Various types of plastics can be used in injection molding, including commodity plastics, engineering plastics, and high-performance plastics. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency.

4. Strength and Durability:

Injection molded parts can exhibit excellent strength and durability. During the injection molding process, the molten material is uniformly distributed within the mold, resulting in consistent mechanical properties throughout the part. This uniformity enhances the structural integrity of the part, making it suitable for applications that require strength and longevity.

5. Minimal Post-Processing:

Injection molded parts often require minimal post-processing. The high precision and quality achieved during the molding process reduce the need for extensive additional machining or finishing operations. The parts typically come out of the mold with the desired shape, surface finish, and dimensional accuracy, reducing time and costs associated with post-processing activities.

6. Design Flexibility:

Injection molding offers significant design flexibility. The process can accommodate complex geometries, intricate details, undercuts, thin walls, and other design features that may be challenging or costly with other manufacturing methods. Designers have the freedom to create parts with unique shapes and functional requirements. Injection molding also allows for the integration of multiple components or features into a single part, reducing assembly requirements and potential points of failure.

7. Rapid Prototyping:

Injection molding is also used for rapid prototyping. By quickly producing functional prototypes using the same process and materials as the final production parts, designers and engineers can evaluate the part’s form, fit, and function early in the development cycle. Rapid prototyping with injection molding enables faster iterations, reduces development time, and helps identify and address design issues before committing to full-scale production.

8. Environmental Considerations:

Injection molding can have environmental advantages compared to other manufacturing processes. The process generates minimal waste as the excess material can be recycled and reused. Injection molded parts also tend to be lightweight, which can contribute to energy savings during transportation and reduce the overall environmental impact.

In summary, injection molding offers several advantages for producing parts. It provides high precision and complexity, cost-effective mass production, material versatility, strength and durability, minimal post-processing requirements, design flexibility, rapid prototyping capabilities, and environmental considerations. These advantages make injection molding a highly desirable manufacturing process for a wide range of industries, enabling the production of high-quality plastic parts efficiently and economically.

China high quality OEM/ODM Customized Rapid Prototype Mould Manufacturer ABS CHINAMFG Injection Molding for Small Molded Parts  China high quality OEM/ODM Customized Rapid Prototype Mould Manufacturer ABS CHINAMFG Injection Molding for Small Molded Parts
editor by CX 2024-02-18